Christine K Wagner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/339392/publications.pdf

Version: 2024-02-01

29 1,004 17 27
papers citations h-index g-index

29 29 29 671 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Sex Differences in Progesterone Receptor Expression: A Potential Mechanism for Estradiol-Mediated Sexual Differentiation. Endocrinology, 2002, 143, 3727-3739.	2.8	108
2	Distribution of progesterone receptor immunoreactivity in the fetal and neonatal rat forebrain. Journal of Comparative Neurology, 2007, 504, 42-56.	1.6	96
3	Potential Role of Maternal Progesterone in the Sexual Differentiation of the Brain. Endocrinology, 1998, 139, 3658-3661.	2.8	94
4	The many faces of progesterone: A role in adult and developing male brain. Frontiers in Neuroendocrinology, 2006, 27, 340-359.	5.2	90
5	Sex differences in progesterone receptor immunoreactivity in neonatal mouse brain depend on estrogen receptor α expression. Journal of Neurobiology, 2001, 47, 176-182.	3.6	71
6	Regulation of Progesterone Receptor Expression by Estradiol Is Dependent on Age, Sex and Region in the Rat Brain. Endocrinology, 2008, 149, 3054-3061.	2.8	68
7	Progesterone receptors and the sexual differentiation of the medial preoptic nucleus. Journal of Neurobiology, 2002, 51, 24-32.	3.6	53
8	Neonatal Mice Possessing an Sry Transgene Show a Masculinized Pattern of Progesterone Receptor Expression in the Brain Independent of Sex Chromosome Status. Endocrinology, 2004, 145, 1046-1049.	2.8	51
9	Progesterone Receptors and Neural Development: A Gap between Bench and Bedside?. Endocrinology, 2008, 149, 2743-2749.	2.8	46
10	Effects of neonatal RU486 on adult sexual, parental, and fearful behaviors in rats Behavioral Neuroscience, 2001, 115, 58-70.	1.2	41
11	Estrogen Receptor (ER) \hat{l}^2 Modulates ER $\hat{l}\pm$ Responses to Estrogens in the Developing Rat Ventromedial Nucleus of the Hypothalamus. Endocrinology, 2008, 149, 4615-4621.	2.8	38
12	Potential Role of Maternal Progesterone in the Sexual Differentiation of the Brain. Endocrinology, 1998, 139, 3658-3661.	2.8	32
13	Distribution of progesterone receptor immunoreactivity in the midbrain and hindbrain of postnatal rats. Developmental Neurobiology, 2008, 68, 1378-1390.	3.0	29
14	Exposure to the Synthetic Progestin, 17α-Hydroxyprogesterone Caproate During Development Impairs Cognitive Flexibility in Adulthood. Endocrinology, 2016, 157, 77-82.	2.8	29
15	Progestin receptor is transiently expressed perinatally in neurons of the rat isocortex. Journal of Comparative Neurology, 2009, 512, 124-139.	1.6	28
16	Progesterone Receptor Expression in the Developing Mesocortical Dopamine Pathway: Importance for Complex Cognitive Behavior in Adulthood. Neuroendocrinology, 2016, 103, 207-222.	2.5	28
17	Estradiol induces hypothalamic progesterone receptors but does not activate mating behavior in male hamsters (Mesocricetus auratus) before puberty Behavioral Neuroscience, 2002, 116, 198-205.	1.2	27
18	Ontogeny of Progesterone Receptor Expression in the Subplate of Fetal and Neonatal Rat Cortex. Cerebral Cortex, 2010, 20, 1046-1052.	2.9	17

#	Article	lF	CITATIONS
19	Progesterone receptor expression in cajalâ€retzius cells of the developing rat dentate gyrus: Potential role in hippocampusâ€dependent memory. Journal of Comparative Neurology, 2018, 526, 2285-2300.	1.6	12
20	Estradiol induces hypothalamic progesterone receptors but does not activate mating behavior in male hamsters (Mesocricetus auratus) before puberty Behavioral Neuroscience, 2002, 116, 198-205.	1.2	11
21	Sex differences in dopamine innervation and microglia are altered by synthetic progestin in neonatal medial prefrontal cortex. Journal of Neuroendocrinology, 2021, 33, e12962.	2.6	9
22	Progesterone from maternal circulation binds to progestin receptors in fetal brain. Developmental Neurobiology, 2017, 77, 767-774.	3.0	8
23	Inhibition of progesterone receptor activity during development increases reelin-immunoreactivity in Cajal-Retzius cells, alters synaptic innervation in neonatal dentate gyrus, and impairs episodic-like memory in adulthood. Hormones and Behavior, 2021, 127, 104887.	2.1	6
24	Sensorimotor development in neonatal progesterone receptor knockout mice. Developmental Neurobiology, 2014, 74, 16-24.	3.0	5
25	Bisphenol A (BPA) induces progesterone receptor expression in an estrogen receptor α-dependent manner in perinatal brain. Neurotoxicology and Teratology, 2020, 78, 106864.	2.4	3
26	Developmental exposure to 17αâ€hydroxyprogesterone caproate impairs adult delayed reinforcement and reversal learning in male and female rats. Journal of Neuroendocrinology, 2020, 32, e12862.	2.6	2
27	Developmental exposure to the synthetic progestin, 17αâ€hydroxyprogesterone caproate, disrupts the mesocortical serotonin pathway and alters impulsive decisionâ€making in rats. Developmental Neurobiology, 2021, 81, 763-773.	3.0	1
28	Performance on a modified signal detection task of attention is impaired in male and female rats following developmental exposure to the synthetic progestin, $17\hat{l}$ ±-hydroxyprogesterone caproate. Hormones and Behavior, 2021, 135, 105039.	2.1	1
29	Cover Image, Volume 526, Issue 14. Journal of Comparative Neurology, 2018, 526, C1-C1.	1.6	O