
Daniel G Olmedo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3393794/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Titanium dental implantâ€related pathologies: A retrospective histopathological study. Oral Diseases, 2022, 28, 503-512.	1.5	7
2	A <scp>collagenâ€silicaâ€</scp> based biocomposite for potential application in bone tissue engineering. Journal of Biomedical Materials Research - Part A, 2022, 110, 331-340.	2.1	14
3	Systemic effect of <scp>TiO₂</scp> micro―and nanoparticles after acute exposure in a murine model. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 1563-1572.	1.6	3
4	Recent Advances in Synthetic and Natural Biomaterialsâ€Based Therapy for Bone Defects. Macromolecular Bioscience, 2022, 22, e2100383.	2.1	14
5	A Biocompatible Ultrananocrystalline Diamond (UNCD) Coating for a New Generation of Dental Implants. Nanomaterials, 2022, 12, 782.	1.9	8
6	Periâ€implantitis is not periodontitis: Scientific discoveries shed light on microbiomeâ€biomaterial interactions that may determine disease phenotype. Periodontology 2000, 2021, 86, 231-240.	6.3	88
7	Neurotoxicity mediated by oxidative stress caused by titanium dioxide nanoparticles in human neuroblastoma (SH-SY5Y) cells. Journal of Trace Elements in Medicine and Biology, 2020, 57, 126413.	1.5	37
8	Research on implants and osseointegration. Periodontology 2000, 2019, 79, 178-189.	6.3	143
9	Tissue response to porous high density polyethylene as a three-dimensional scaffold for bone tissue engineering: An experimental study. Journal of Biomaterials Science, Polymer Edition, 2019, 30, 486-499.	1.9	10
10	Oral exfoliative cytology and corrosion of metal piercings. Tissue implications. Clinical Oral Investigations, 2019, 23, 1895-1904.	1.4	4
11	Titanium Nanoparticle Size Influences Trace Concentration Levels in Skin Appendages. Toxicologic Pathology, 2017, 45, 624-632.	0.9	8
12	<scp>S</scp> ynthesis and characterization of a novel scaffold for bone tissue engineering based on <scp>W</scp> harton's jelly. Journal of Biomedical Materials Research - Part A, 2017, 105, 1034-1045.	2.1	9
13	Biokinetics and tissue response to ultrananocrystalline diamond nanoparticles employed as coating for biomedical devices. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2017, 105, 2408-2415.	1.6	17
14	Migration of titanium dioxide microparticles and nanoparticles through the body and deposition in the gingiva: an experimental study in rats. European Journal of Oral Sciences, 2015, 123, 242-248.	0.7	25
15	<i>In vitro</i> age dependent response of macrophages to micro and nano titanium dioxide particles. Journal of Biomedical Materials Research - Part A, 2015, 103, 471-478.	2.1	10
16	Biocompatible ultrananocrystalline diamond coatings for implantable medical devices. MRS Bulletin, 2014, 39, 621-629.	1.7	32
17	Impact through time of different sized titanium dioxide particles on biochemical and histopathological parameters. Journal of Biomedical Materials Research - Part A, 2014, 102, 1439-1448.	2.1	34
18	Exfoliative Cytology and Titanium Dental Implants: A Pilot Study. Journal of Periodontology, 2013, 84, 78-83.	1.7	124

DANIEL G OLMEDO

#	Article	IF	CITATIONS
19	Oral Mucosa Tissue Response to Titanium Cover Screws. Journal of Periodontology, 2012, 83, 973-980.	1.7	74
20	<i>In vivo</i> comparative biokinetics and biocompatibility of titanium and zirconium microparticles. Journal of Biomedical Materials Research - Part A, 2011, 98A, 604-613.	2.1	26
21	The issue of corrosion in dental implants: a review. Acta Odontológica Latinoamericana: AOL, 2009, 22, 3-9.	0.1	18
22	Biodistribution of titanium dioxide from biologic compartments. Journal of Materials Science: Materials in Medicine, 2008, 19, 3049-3056.	1.7	37
23	Biological response of tissues with macrophagic activity to titanium dioxide. Journal of Biomedical Materials Research - Part A, 2008, 84A, 1087-1093.	2.1	68
24	Malignant Fibrous Histiocytoma Associated with Coxofemoral Arthrodesis. Tumori, 2007, 93, 504-507.	0.6	3
25	Malignant fibrous histiocytoma associated with coxofemoral arthrodesis. Tumori, 2007, 93, 504-7.	0.6	2
26	Effect of titanium dioxide on the oxidative metabolism of alveolar macrophages: An experimental study in rats. Journal of Biomedical Materials Research - Part A, 2005, 73A, 142-149.	2.1	48
27	Effect of Platelet-Rich Plasma on the Peri-implant Bone Response:. Implant Dentistry, 2004, 13, 73-78.	1.7	59
28	Titanium transport through the blood stream. An experimental study on rats. Journal of Materials Science: Materials in Medicine, 2003, 14, 1099-1103.	1.7	48
29	Macrophages Related to Dental Implant Failure. Implant Dentistry, 2003, 12, 75-80.	1.7	112
30	An experimental study of the dissemination of Titanium and Zirconium in the body. Journal of Materials Science: Materials in Medicine, 2002, 13, 793-796.	1.7	75
31	Histomorphometric Study of Bone Healing Around Laminar Implants in Experimental Diabetes. Implant Dentistry, 2000, 9, 143-149.	1.7	47