
Yudong Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3393381/publications.pdf Version: 2024-02-01

YUDONC THENC

#	Article	IF	CITATIONS
1	In situ synthesis of silver-nanoparticles/bacterial cellulose composites for slow-released antimicrobial wound dressing. Carbohydrate Polymers, 2014, 102, 762-771.	5.1	406
2	Silver nanoparticle/bacterial cellulose gel membranes for antibacterial wound dressing: investigation <i>in vitro</i> and <i>in vivo</i> . Biomedical Materials (Bristol), 2014, 9, 035005.	1.7	149
3	pH- and electro-response characteristics of bacterial cellulose nanofiber/sodium alginate hybrid hydrogels for dual controlled drug delivery. RSC Advances, 2014, 4, 47056-47065.	1.7	145
4	<i>In Vitro</i> Cytotoxicity of Bacterial Cellulose Scaffolds Used for Tissue-engineered Bone. Journal of Bioactive and Compatible Polymers, 2009, 24, 137-145.	0.8	95
5	Sulfonated bacterial cellulose/polyaniline composite membrane for use as gel polymer electrolyte. Composites Science and Technology, 2017, 145, 122-131.	3.8	91
6	Fabrication of nanofibrous microcarriers mimicking extracellular matrix for functional microtissue formation and cartilage regeneration. Biomaterials, 2018, 171, 118-132.	5.7	77
7	Highly transparent, highly flexible composite membrane with multiple antimicrobial effects used for promoting wound healing. Carbohydrate Polymers, 2019, 222, 114985.	5.1	75
8	The antibacterial stability of poly(dopamine) in-situ reduction and chelation nano-Ag based on bacterial cellulose network template. Applied Surface Science, 2019, 491, 383-394.	3.1	70
9	Novel Electronic–Ionic Hybrid Conductive Composites for Multifunctional Flexible Bioelectrode Based on in Situ Synthesis of Poly(dopamine) on Bacterial Cellulose. ACS Applied Materials & Interfaces, 2018, 10, 22692-22702.	4.0	61
10	Influence of dialdehyde bacterial cellulose with the nonlinear elasticity and topology structure of ECM on cell adhesion and proliferation. RSC Advances, 2014, 4, 3998-4009.	1.7	53
11	The effects of two biocompatible plasticizers on the performance of dry bacterial cellulose membrane: a comparative study. Cellulose, 2018, 25, 5893-5908.	2.4	52
12	Cellulose fibers-reinforced self-expanding porous composite with multiple hemostatic efficacy and shape adaptability for uncontrollable massive hemorrhage treatment. Bioactive Materials, 2021, 6, 2089-2104.	8.6	49
13	A novel biodegradable polyurethane based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(ethylene glycol) as promising biomaterials with the improvement of mechanical properties and hemocompatibility. Polymer Chemistry, 2016, 7, 6120-6132.	1.9	48
14	Dual stimulus responsive drug release under the interaction of pH value and pulsatile electric field for a bacterial cellulose/sodium alginate/multi-walled carbon nanotube hybrid hydrogel. RSC Advances, 2015, 5, 41820-41829.	1.7	47
15	A novel microporous oxidized bacterial cellulose/arginine composite and its effect on behavior of fibroblast/endothelial cell. Carbohydrate Polymers, 2018, 184, 323-332.	5.1	47
16	Effects of graphene on the structure, properties, electro-response behaviors of GO/PAA composite hydrogels and influence of electro-mechanical coupling on BMSC differentiation. Materials Science and Engineering C, 2018, 93, 853-863.	3.8	45
17	Nanotubular surface modification of metallic implants via electrochemical anodization technique. International Journal of Nanomedicine, 2014, 9, 4421.	3.3	43
18	Nanoparticle assembly of a photo- and pH-responsive random azobenzene copolymer. Journal of Colloid and Interface Science, 2014, 421, 15-21.	5.0	43

YUDONG ZHENG

#	Article	IF	CITATIONS
19	Protein adsorption behaviors of carboxymethylated bacterial cellulose membranes. International Journal of Biological Macromolecules, 2015, 73, 264-269.	3.6	43
20	In situ synthesis of bacterial cellulose/copper nanoparticles composite membranes with long-term antibacterial property. Journal of Biomaterials Science, Polymer Edition, 2018, 29, 2137-2153.	1.9	43
21	Enhanced Neurite Outgrowth on a Multiblock Conductive Nerve Scaffold with Selfâ€Powered Electrical Stimulation. Advanced Healthcare Materials, 2019, 8, e1900127.	3.9	42
22	Synthesis of bio-castor oil polyurethane flexible foams and the influence of biotic component on their performance. Journal of Polymer Research, 2015, 22, 1.	1.2	37
23	Silver nanoparticles stimulate osteogenesis of human mesenchymal stem cells through activation of autophagy. Nanomedicine, 2020, 15, 337-353.	1.7	37
24	Selective oxidation of bacterial cellulose by NO ₂ –HNO ₃ . RSC Advances, 2014, 4, 1630-1639.	1.7	35
25	Preparation of a carboxymethylated bacterial cellulose/polyaniline composite gel membrane and its characterization. RSC Advances, 2016, 6, 68599-68605.	1.7	35
26	Preparation of aminoalkylâ€grafted bacterial cellulose membranes with improved antimicrobial properties for biomedical applications. Journal of Biomedical Materials Research - Part A, 2020, 108, 1086-1098.	2.1	33
27	Bacterial Cellulose: Functional Modification and Wound Healing Applications. Advances in Wound Care, 2021, 10, 623-640.	2.6	32
28	A self-crosslinking, double-functional group modified bacterial cellulose gel used for antibacterial and healing of infected wound. Bioactive Materials, 2022, 17, 248-260.	8.6	32
29	Performance and characterization of irradiated poly(vinyl alcohol)/polyvinylpyrrolidone composite hydrogels used as cartilages replacement. Journal of Applied Polymer Science, 2009, 113, 736-741.	1.3	31
30	Low swelling hyperbranched poly(amine-ester) hydrogels for pH-modulated differential release of anticancer drugs. Journal of Materials Chemistry, 2011, 21, 13530.	6.7	30
31	Preparation and characterization of degradable oxidized bacterial cellulose reacted with nitrogen dioxide. Polymer Bulletin, 2012, 68, 415-423.	1.7	30
32	Polylysine-decorated macroporous microcarriers laden with adipose-derived stem cells promote nerve regeneration in vivo. Bioactive Materials, 2021, 6, 3987-3998.	8.6	30
33	A novel bioactive polyurethane with controlled degradation and L-Arg release used as strong adhesive tissue patch for hemostasis and promoting wound healing. Bioactive Materials, 2022, 17, 471-487.	8.6	30
34	Immobilization of collagen peptide on dialdehyde bacterial cellulose nanofibers via covalent bonds for tissue engineering and regeneration. International Journal of Nanomedicine, 2015, 10, 4623.	3.3	29
35	Antibacterial properties and cytocompatibility of bio-based nanostructured carbon aerogels derived from silver nanoparticles deposited onto bacterial cellulose. RSC Advances, 2015, 5, 97467-97476.	1.7	24
36	An environmentally friendly preparation and characterization of waterborne polyurethane hydrogels by polyvinyl alcohol physical cross-linking to improve water absorption. RSC Advances, 2015, 5, 73882-73891.	1.7	24

YUDONG ZHENG

#	Article	IF	CITATIONS
37	Processing, structure, and properties of multiwalled carbon nanotube/poly(hydroxybutyrateâ€ <i>co</i> â€valerate) biopolymer nanocomposites. Journal of Applied Polymer Science, 2012, 125, E620.	1.3	23
38	Formation of Cr(VI) compounds during the thermal decomposition of amorphous chromium hydroxide. Journal of Thermal Analysis and Calorimetry, 2014, 117, 741-745.	2.0	23
39	An ultrasound-controllable release system based on waterborne polyurethane/chitosan membrane for implantable enhanced anticancer therapy. Materials Science and Engineering C, 2019, 104, 109944.	3.8	22
40	The preparation and characterization of double-layer microcapsules used for the self-healing of resin matrix composites. Journal of Materials Chemistry, 2012, 22, 25437.	6.7	21
41	Cauda Equina-Derived Extracellular Matrix for Fabrication of Nanostructured Hybrid Scaffolds Applied to Neural Tissue Engineering. Tissue Engineering - Part A, 2015, 21, 1095-1105.	1.6	21
42	In-situ self-assembly of bacterial cellulose/poly(3,4-ethylenedioxythiophene)-sulfonated nanofibers for peripheral nerve repair. Carbohydrate Polymers, 2022, 281, 119044.	5.1	21
43	Preparation and characteristic of a sodium alginate/carboxymethylated bacterial cellulose composite with a crosslinking semiâ€interpenetrating network. Journal of Applied Polymer Science, 2014, 131, .	1.3	19
44	Performance of novel bioactive hybrid hydrogels <i>in vitro</i> and <i>in vivo</i> used for artificial cartilage. Biomedical Materials (Bristol), 2009, 4, 015015.	1.7	18
45	Effects of silica–gentamicin nanohybrids on osteogenic differentiation of human osteoblast-like SaOS-2 cells. International Journal of Nanomedicine, 2018, Volume 13, 877-893.	3.3	18
46	Chemical modifications and characteristic changes in bacterial cellulose treated with different media. Journal of Polymer Research, 2012, 19, 1.	1.2	17
47	Preparation and Characterization of Moldable Demineralized Bone Matrix/Calcium Sulfate Composite Bone Graft Materials. Journal of Functional Biomaterials, 2021, 12, 56.	1.8	16
48	Characteristic comparison of bioactive scaffolds based on polyhydroxyalkoanate/bioceramic hybrids. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2007, 80B, 236-243.	1.6	13
49	Double-Modified Bacterial Cellulose/Soy Protein Isolate Composites by Laser Hole Forming and Selective Oxidation Used for Urethral Repair. Biomacromolecules, 2022, 23, 291-302.	2.6	13
50	Regulatory science for hernia mesh: Current status and future perspectives. Bioactive Materials, 2021, 6, 420-432.	8.6	12
51	Effect of selective oxidation of bacterial cellulose on degradability in phosphate buffer solution and their affinity for epidermal cell attachment. RSC Advances, 2014, 4, 60749-60756.	1.7	11
52	An oxygen tolerance conductive hydrogel anode membrane for use in a potentially implantable glucose fuel cell. RSC Advances, 2016, 6, 112971-112980.	1.7	11
53	Evaluation of the anti-biofilm activities of bacterial cellulose-tannic acid-magnesium chloride composites using an <i>in vitro</i> multispecies biofilm model. International Journal of Energy Production and Management, 2021, 8, rbab054.	1.9	11
54	Preparation, mechanical properties, fatigue and tribological behavior of double crosslinked high strength hydrogel. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 126, 105009.	1.5	11

YUDONG ZHENG

#	Article	IF	CITATIONS
55	Bacterial cellulose/soybean protein isolate composites with promoted inflammation inhibition, angiogenesis and hair follicle regeneration for wound healing. International Journal of Biological Macromolecules, 2022, 211, 754-766.	3.6	9
56	Mussel-inspired fabrication of a flexible free-standing membrane cathode for oxygen reduction in neutral media. Journal of Electroanalytical Chemistry, 2017, 799, 377-385.	1.9	8
57	Plant protein modified natural cellulose with multiple adsorption effects used for bilirubin removal. International Journal of Biological Macromolecules, 2021, 166, 179-189.	3.6	8
58	In vivo Evaluation of Fibrous Collagen Dura Substitutes. Frontiers in Bioengineering and Biotechnology, 2021, 9, 628129.	2.0	7
59	Injectable biomimetic shellfish macromolecule conductive microcarriers loaded with adipose-derived stem cells for nerve repair in vivo. Applied Materials Today, 2021, 25, 101195.	2.3	7
60	Cupric ion release and cytotoxicity for Yuangong Cu-IUDs and the release behavior of indomethacin for medicated 220 Cu-IUD. Science Bulletin, 2009, 54, 3160-3166.	1.7	6
61	Diffusion of neutral solutes within human osteoarthritic cartilage: Effect of loading patterns. Journal of Orthopaedic Translation, 2020, 22, 58-66.	1.9	6
62	Design and characterization of plasticized bacterial cellulose/waterborne polyurethane composite with antibacterial function for nasal stenting. International Journal of Energy Production and Management, 2020, 7, 597-608.	1.9	5
63	Mild in situ growth of platinum nanoparticles on multiwalled carbon nanotube-poly (vinyl alcohol) hydrogel electrode for glucose electrochemical oxidation. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	3
64	Photo- and pH-responsive Electrospun Polymer Films: Wettability and Protein Adsorption Characteristics. Chemistry Letters, 2015, 44, 1368-1370.	0.7	1