
Matthias Beller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/339313/publications.pdf Version: 2024-02-01

MATTHIAS RELIED

#	Article	IF	CITATIONS
1	Using carbon dioxide as a building block in organic synthesis. Nature Communications, 2015, 6, 5933.	5.8	1,581
2	Metal-Initiated Amination of Alkenes and Alkynes. Chemical Reviews, 1998, 98, 675-704.	23.0	1,282
3	Palladiumâ€Catalyzed Carbonylation Reactions of Aryl Halides and Related Compounds. Angewandte Chemie - International Edition, 2009, 48, 4114-4133.	7.2	1,275
4	Recent Applications of Palladium atalyzed Coupling Reactions in the Pharmaceutical, Agrochemical, and Fine Chemical Industries. Advanced Synthesis and Catalysis, 2009, 351, 3027-3043.	2.1	1,222
5	Synthesis of Heterocycles via Palladium-Catalyzed Carbonylations. Chemical Reviews, 2013, 113, 1-35.	23.0	1,105
6	Sustainable Metal Catalysis with Iron: From Rust to a Rising Star?. Angewandte Chemie - International Edition, 2008, 47, 3317-3321.	7.2	1,101
7	Catalytic Markovnikov and anti-Markovnikov Functionalization of Alkenes and Alkynes: Recent Developments and Trends. Angewandte Chemie - International Edition, 2004, 43, 3368-3398.	7.2	981
8	Nanoscale Fe ₂ O ₃ -Based Catalysts for Selective Hydrogenation of Nitroarenes to Anilines. Science, 2013, 342, 1073-1076.	6.0	868
9	Palladium-catalyzed carbonylative coupling reactions between Ar–X and carbon nucleophiles. Chemical Society Reviews, 2011, 40, 4986.	18.7	849
10	Progress in hydroformylation and carbonylation. Journal of Molecular Catalysis A, 1995, 104, 17-85.	4.8	826
11	Homogeneous Catalysis for Sustainable Hydrogen Storage in Formic Acid and Alcohols. Chemical Reviews, 2018, 118, 372-433.	23.0	805
12	Efficient Dehydrogenation of Formic Acid Using an Iron Catalyst. Science, 2011, 333, 1733-1736.	6.0	728
13	Bridging homogeneous and heterogeneous catalysis by heterogeneous single-metal-site catalysts. Nature Catalysis, 2018, 1, 385-397.	16.1	725
14	Low-temperature aqueous-phase methanol dehydrogenation to hydrogen and carbon dioxide. Nature, 2013, 495, 85-89.	13.7	680
15	Formic acid as a hydrogen storage material – development of homogeneous catalysts for selective hydrogen release. Chemical Society Reviews, 2016, 45, 3954-3988.	18.7	660
16	The Catalytic Amination of Alcohols. ChemCatChem, 2011, 3, 1853-1864.	1.8	648
17	Heterogenized cobalt oxide catalysts for nitroarene reduction by pyrolysis of molecularly defined complexes. Nature Chemistry, 2013, 5, 537-543.	6.6	633
18	MOF-derived cobalt nanoparticles catalyze a general synthesis of amines. Science, 2017, 358, 326-332.	6.0	604

#	Article	IF	CITATIONS
19	Recent developments and perspectives in palladium-catalyzed cyanation of aryl halides: synthesis of benzonitriles. Chemical Society Reviews, 2011, 40, 5049.	18.7	597
20	Reduction of Nitro Compounds Using 3d-Non-Noble Metal Catalysts. Chemical Reviews, 2019, 119, 2611-2680.	23.0	525
21	Efficient and selective N-alkylation of amines with alcohols catalysed by manganese pincer complexes. Nature Communications, 2016, 7, 12641.	5.8	516
22	Synthesis, Characterization, and Application of Metal Nanoparticles Supported on Nitrogenâ€Doped Carbon: Catalysis beyond Electrochemistry. Angewandte Chemie - International Edition, 2016, 55, 12582-12594.	7.2	492
23	A Wellâ€Defined Iron Catalyst for the Reduction of Bicarbonates and Carbon Dioxide to Formates, Alkyl Formates, and Formamides. Angewandte Chemie - International Edition, 2010, 49, 9777-9780.	7.2	486
24	Selective Catalytic Hydrogenations of Nitriles, Ketones, and Aldehydes by Well-Defined Manganese Pincer Complexes. Journal of the American Chemical Society, 2016, 138, 8809-8814.	6.6	485
25	Controlled Generation of Hydrogen from Formic Acid Amine Adducts at Room Temperature and Application in H ₂ /O ₂ Fuel Cells. Angewandte Chemie - International Edition, 2008, 47, 3962-3965.	7.2	469
26	A New Highly Efficient Catalyst System for the Coupling of Nonactivated and Deactivated Aryl Chlorides with Arylboronic Acids. Angewandte Chemie - International Edition, 2000, 39, 4153-4155.	7.2	464
27	Transition-Metal-Catalyzed Carbonylation Reactions of Olefins and Alkynes: A Personal Account. Accounts of Chemical Research, 2014, 47, 1041-1053.	7.6	453
28	Stateâ€ofâ€theâ€Art Catalysts for Hydrogenation of Carbon Dioxide. Angewandte Chemie - International Edition, 2010, 49, 6254-6257.	7.2	450
29	Homogeneous catalysis using iron complexes: recent developments in selective reductions. Chemical Communications, 2011, 47, 4849.	2.2	428
30	Palladacycles: Efficient New Catalysts for the Heck Vinylation of Aryl Halides. Chemistry - A European Journal, 1997, 3, 1357-1364.	1.7	427
31	Catalytic Generation of Hydrogen from Formic acid and its Derivatives: Useful Hydrogen Storage Materials. Topics in Catalysis, 2010, 53, 902-914.	1.3	387
32	Palladium atalyzed Carbonylation Reactions of Alkenes and Alkynes. ChemCatChem, 2009, 1, 28-41.	1.8	384
33	Carbonylations of Alkenes with CO Surrogates. Angewandte Chemie - International Edition, 2014, 53, 6310-6320.	7.2	376
34	Zinc-Catalyzed Reduction of Amides: Unprecedented Selectivity and Functional Group Tolerance. Journal of the American Chemical Society, 2010, 132, 1770-1771.	6.6	345
35	Well-Defined Iron Catalyst for Improved Hydrogenation of Carbon Dioxide and Bicarbonate. Journal of the American Chemical Society, 2012, 134, 20701-20704.	6.6	345
36	Recent Developments on the Trifluoromethylation of (Hetero)Arenes. Chemistry - an Asian Journal, 2012, 7, 1744-1754.	1.7	337

#	Article	IF	CITATIONS
37	Catalytic Hydrogenation of Carboxylic Acid Esters, Amides, and Nitriles with Homogeneous Catalysts. Organic Process Research and Development, 2014, 18, 289-302.	1.3	336
38	An Efficient and General Iron-Catalyzed Arylation of Benzyl Alcohols and Benzyl Carboxylates. Angewandte Chemie - International Edition, 2005, 44, 3913-3917.	7.2	334
39	Selective Oxidation of Alcohols to Esters Using Heterogeneous Co ₃ O ₄ –N@C Catalysts under Mild Conditions. Journal of the American Chemical Society, 2013, 135, 10776-10782.	6.6	334
40	Iron-Catalyzed Hydrogen Production from Formic Acid. Journal of the American Chemical Society, 2010, 132, 8924-8934.	6.6	326
41	General and Selective Iron-Catalyzed Transfer Hydrogenation of Nitroarenes without Base. Journal of the American Chemical Society, 2011, 133, 12875-12879.	6.6	322
42	Selective Reduction of Carboxylic Acid Derivatives by Catalytic Hydrosilylation. Angewandte Chemie - International Edition, 2011, 50, 6004-6011.	7.2	321
43	Internal Olefins to Linear Amines. Science, 2002, 297, 1676-1678.	6.0	318
44	Potassium hexacyanoferrate(ii)—a new cyanating agent for the palladium-catalyzed cyanation of aryl halides. Chemical Communications, 2004, , 1388-1389.	2.2	315
45	Pincerâ€Type Complexes for Catalytic (De)Hydrogenation and Transfer (De)Hydrogenation Reactions: Recent Progress. Chemistry - A European Journal, 2015, 21, 12226-12250.	1.7	312
46	Selective Hydrogen Production from Methanol with a Defined Iron Pincer Catalyst under Mild Conditions. Angewandte Chemie - International Edition, 2013, 52, 14162-14166.	7.2	308
47	Palladium atalyzed Oxidative Carbonylation Reactions. ChemSusChem, 2013, 6, 229-241.	3.6	301
48	Tuning Catalytic Activity between Homogeneous and Heterogeneous Catalysis: Improved Activity and Selectivity of Free Nanoâ€Fe ₂ O ₃ in Selective Oxidations. Angewandte Chemie - International Edition, 2007, 46, 8866-8868.	7.2	299
49	Homogeneous Catalysis by Manganeseâ€Based Pincer Complexes. European Journal of Organic Chemistry, 2017, 2017, 4344-4362.	1.2	289
50	CO ₂ â€â€œNeutral―Hydrogen Storage Based on Bicarbonates and Formates. Angewandte Chemie - International Edition, 2011, 50, 6411-6414.	7.2	276
51	Manganeseâ€Catalyzed Hydrogenâ€Autotransfer Câ^'C Bond Formation: αâ€Alkylation of Ketones with Primary Alcohols. Angewandte Chemie - International Edition, 2016, 55, 14967-14971.	7.2	270
52	Hydrogenation of Esters to Alcohols with a Wellâ€Đefined Iron Complex. Angewandte Chemie - International Edition, 2014, 53, 8722-8726.	7.2	269
53	General and Regioselective Synthesis of Pyrroles via Ruthenium-Catalyzed Multicomponent Reactions. Journal of the American Chemical Society, 2013, 135, 11384-11388.	6.6	268
54	Selective CO ₂ Reduction to CO in Water using Earth-Abundant Metal and Nitrogen-Doped Carbon Electrocatalysts. ACS Catalysis, 2018, 8, 6255-6264.	5.5	267

#	Article	IF	CITATIONS
55	Synthesis and Characterization of Iron–Nitrogen-Doped Graphene/Core–Shell Catalysts: Efficient Oxidative Dehydrogenation of <i>N</i> -Heterocycles. Journal of the American Chemical Society, 2015, 137, 10652-10658.	6.6	265
56	A Convenient and General Iron atalyzed Reduction of Amides to Amines. Angewandte Chemie - International Edition, 2009, 48, 9507-9510.	7.2	264
57	An Efficient and General Synthesis of Primary Amines by Rutheniumâ€Catalyzed Amination of Secondary Alcohols with Ammonia. Angewandte Chemie - International Edition, 2010, 49, 8126-8129.	7.2	263
58	Mild and selective hydrogenation of aromatic and aliphatic (di)nitriles with a well-defined iron pincer complex. Nature Communications, 2014, 5, 4111.	5.8	260
59	Hydrogenation of Esters to Alcohols Catalyzed by Defined Manganese Pincer Complexes. Angewandte Chemie - International Edition, 2016, 55, 15364-15368.	7.2	259
60	A Convenient Procedure for the Palladium-Catalyzed Cyanation of Aryl Halides. Angewandte Chemie - International Edition, 2003, 42, 1661-1664.	7.2	256
61	Hydrogen Generation at Ambient Conditions: Application in Fuel Cells. ChemSusChem, 2008, 1, 751-758.	3.6	254
62	Selective Methylation of Amines with Carbon Dioxide and H ₂ . Angewandte Chemie - International Edition, 2013, 52, 12156-12160.	7.2	254
63	Towards a Green Process for Bulkâ€Scale Synthesis of Ethyl Acetate: Efficient Acceptorless Dehydrogenation of Ethanol. Angewandte Chemie - International Edition, 2012, 51, 5711-5713.	7.2	252
64	Cooperative Transitionâ€Metal and Chiral BrÃ,nsted Acid Catalysis: Enantioselective Hydrogenation of Imines To Form Amines. Angewandte Chemie - International Edition, 2011, 50, 5120-5124.	7.2	245
65	Catalytic Hydrogenation of Carbon Dioxide and Bicarbonates with a Wellâ€Đefined Cobalt Dihydrogen Complex. Chemistry - A European Journal, 2012, 18, 72-75.	1.7	245
66	Photocatalytic Water Reduction with Copperâ€Based Photosensitizers: A Nobleâ€Metalâ€Free System. Angewandte Chemie - International Edition, 2013, 52, 419-423.	7.2	243
67	Efficient Hydrogen Production from Alcohols under Mild Reaction Conditions. Angewandte Chemie - International Edition, 2011, 50, 9593-9597.	7.2	240
68	Catalytic reductive aminations using molecular hydrogen for synthesis of different kinds of amines. Chemical Society Reviews, 2020, 49, 6273-6328.	18.7	240
69	Synthesis of Primary Amines:  First Homogeneously Catalyzed Reductive Amination with Ammonia. Organic Letters, 2002, 4, 2055-2058.	2.4	238
70	A General Catalytic Methylation of Amines Using Carbon Dioxide. Angewandte Chemie - International Edition, 2013, 52, 9568-9571.	7.2	234
71	Lowâ€∓emperature Hydrogenation of Carbon Dioxide to Methanol with a Homogeneous Cobalt Catalyst. Angewandte Chemie - International Edition, 2017, 56, 1890-1893.	7.2	232
72	Practical synthesis of new and highly efficient ligands for the Suzuki reaction of aryl chlorides. Chemical Communications, 2004, , 38.	2.2	231

#	Article	IF	CITATIONS
73	Iron-catalyzed selective reduction of nitroarenes to anilines using organosilanes. Chemical Communications, 2010, 46, 1769.	2.2	230
74	Iron atalyzed αâ€Alkylation of Ketones with Alcohols. Angewandte Chemie - International Edition, 2015, 54, 14483-14486.	7.2	230
75	Selective Rutheniumâ€Catalyzed Threeâ€Component Synthesis of Pyrroles. Angewandte Chemie - International Edition, 2013, 52, 597-601.	7.2	228
76	Transitionâ€Metalâ€Catalyzed Utilization of Methanol as a C ₁ â€Source in Organic Synthesis. Angewandte Chemie - International Edition, 2017, 56, 6384-6394.	7.2	227
77	Alternative Metals for Homogeneous Catalyzed Hydroformylation Reactions. Angewandte Chemie - International Edition, 2013, 52, 2852-2872.	7.2	224
78	Selective Catalytic Hydrogenation of Heteroarenes with <i>N</i> -Graphene-Modified Cobalt Nanoparticles (Co ₃ O ₄ –Co/NGr@î±-Al ₂ O ₃). Journal of the American Chemical Society, 2015, 137, 11718-11724.	6.6	223
79	Multicomponent Coupling Reactions for Organic Synthesis: Chemoselective Reactions with Amide–Aldehyde Mixtures. Chemistry - A European Journal, 2003, 9, 4286-4294.	1.7	219
80	Practical Imidazoleâ€Based Phosphine Ligands for Selective Palladiumâ€Catalyzed Hydroxylation of Aryl Halides. Angewandte Chemie - International Edition, 2009, 48, 918-921.	7.2	219
81	Amines Made Easily:Â A Highly Selective Hydroaminomethylation of Olefins. Journal of the American Chemical Society, 2003, 125, 10311-10318.	6.6	217
82	Development of a General Palladium-Catalyzed Carbonylative Heck Reaction of Aryl Halides. Journal of the American Chemical Society, 2010, 132, 14596-14602.	6.6	213
83	Improved Ruthenium atalyzed Amination of Alcohols with Ammonia: Synthesis of Diamines and Amino Esters. Angewandte Chemie - International Edition, 2011, 50, 7599-7603.	7.2	211
84	Green synthesis of nitriles using non-noble metal oxides-based nanocatalysts. Nature Communications, 2014, 5, 4123.	5.8	205
85	A General and Efficient Method for the Formylation of Aryl and Heteroaryl Bromides. Angewandte Chemie - International Edition, 2006, 45, 154-158.	7.2	200
86	Efficient and highly selective iron-catalyzed reduction of nitroarenes. Chemical Communications, 2011, 47, 10972.	2.2	200
87	Utilization of CO ₂ as a C1 Building Block for Catalytic Methylation Reactions. ACS Catalysis, 2017, 7, 1077-1086.	5.5	200
88	Two Iron Catalysts are Better than One: A General and Convenient Reduction of Aromatic and Aliphatic Primary Amides. Angewandte Chemie - International Edition, 2012, 51, 1662-1666.	7.2	187
89	The First Efficient Hydroaminomethylation with Ammonia: With Dual Metal Catalysts and Two-Phase Catalysis to Primary Amines. Angewandte Chemie - International Edition, 1999, 38, 2372-2375.	7.2	186
90	Recent Developments for the Deuterium and Tritium Labeling of Organic Molecules. Chemical Reviews, 2022, 122, 6634-6718.	23.0	186

#	Article	IF	CITATIONS
91	Ruthenium-catalysed alkoxycarbonylation of alkenes with carbon dioxide. Nature Communications, 2014, 5, 3091.	5.8	185
92	Improved and General Manganeseâ€Catalyzed Nâ€Methylation of Aromatic Amines Using Methanol. Chemistry - A European Journal, 2017, 23, 5410-5413.	1.7	183
93	Efficient and selective hydrogenation of amides to alcohols and amines using a well-defined manganese–PNN pincer complex. Chemical Science, 2017, 8, 3576-3585.	3.7	181
94	Manganese(I)â€Catalyzed Enantioselective Hydrogenation of Ketones Using a Defined Chiral PNP Pincer Ligand. Angewandte Chemie - International Edition, 2017, 56, 11237-11241.	7.2	180
95	Highly selective hydrogenation of arenes using nanostructured ruthenium catalysts modified with a carbon–nitrogen matrix. Nature Communications, 2016, 7, 11326.	5.8	179
96	Efficient Copper(II) atalyzed Transamidation of Nonâ€Activated Primary Carboxamides and Ureas with Amines. Angewandte Chemie - International Edition, 2012, 51, 3905-3909.	7.2	178
97	Lightâ€Driven Hydrogen Generation: Efficient Ironâ€Based Water Reduction Catalysts. Angewandte Chemie - International Edition, 2009, 48, 9962-9965.	7.2	176
98	Recent progress for reversible homogeneous catalytic hydrogen storage in formic acid and in methanol. Coordination Chemistry Reviews, 2018, 373, 317-332.	9.5	173
99	Copper-catalyzed trifluoromethylation of aryl- and vinylboronic acids with generation of CF3-radicals. Chemical Communications, 2013, 49, 2628.	2.2	170
100	Nonâ€Pincerâ€Type Manganese Complexes as Efficient Catalysts for the Hydrogenation of Esters. Angewandte Chemie - International Edition, 2017, 56, 7531-7534.	7.2	169
101	A Highly Efficient Catalyst for the Telomerization of 1,3-Dienes with Alcohols: First Synthesis of a Monocarbenepalladium(0)-Olefin Complex. Angewandte Chemie - International Edition, 2002, 41, 986-989.	7.2	168
102	Selective Palladium atalyzed Aminocarbonylation of Olefins with Aromatic Amines and Nitroarenes. Angewandte Chemie - International Edition, 2013, 52, 14089-14093.	7.2	168
103	Homogeneous and heterogeneous catalysts for hydrogenation of CO ₂ to methanol under mild conditions. Chemical Society Reviews, 2021, 50, 4259-4298.	18.7	167
104	Recent Advances in Catalytic Hydrosilylations: Developments beyond Traditional Platinum Catalysts. Angewandte Chemie - International Edition, 2021, 60, 550-565.	7.2	165
105	A General Ruthenium atalyzed Synthesis of Aromatic Amines. Angewandte Chemie - International Edition, 2007, 46, 8291-8294.	7.2	164
106	Continuous Hydrogen Generation from Formic Acid: Highly Active and Stable Ruthenium Catalysts. Advanced Synthesis and Catalysis, 2009, 351, 2517-2520.	2.1	163
107	A convenient and efficient procedure for the palladium-catalyzed cyanation of aryl halides using trimethylsilylcyanide. Journal of Organometallic Chemistry, 2003, 684, 50-55.	0.8	162

108 Transition Metal Catalyzed Carbonylation Reactions. , 2013, , .

#	Article	IF	CITATIONS
109	Highly Selective Catalyst Systems for the Hydroformylation of Internal Olefins to Linear Aldehydes. Angewandte Chemie - International Edition, 2001, 40, 3408-3411.	7.2	160
110	Selective Palladium atalyzed Aminocarbonylation of Aryl Halides with CO and Ammonia. Chemistry - A European Journal, 2010, 16, 9750-9753.	1.7	159
111	Cobalt Complexes as an Emerging Class of Catalysts for Homogeneous Hydrogenations. Accounts of Chemical Research, 2018, 51, 1858-1869.	7.6	159
112	A Stable Manganese Pincer Catalyst for the Selective Dehydrogenation of Methanol. Angewandte Chemie - International Edition, 2017, 56, 559-562.	7.2	158
113	A General Palladium atalyzed Amination of Aryl Halides with Ammonia. Chemistry - A European Journal, 2009, 15, 4528-4533.	1.7	156
114	Cobalt Singleâ€Atom Catalysts with High Stability for Selective Dehydrogenation of Formic Acid. Angewandte Chemie - International Edition, 2020, 59, 15849-15854.	7.2	156
115	Ruthenium-Catalyzed Selective $\hat{I}\pm, \hat{I}^2$ -Deuteration of Bioactive Amines. Journal of the American Chemical Society, 2012, 134, 12239-12244.	6.6	155
116	A Nobleâ€Metalâ€Free System for Photocatalytic Hydrogen Production from Water. Chemistry - A European Journal, 2013, 19, 15972-15978.	1.7	155
117	Unravelling the Mechanism of Basic Aqueous Methanol Dehydrogenation Catalyzed by Ru–PNP Pincer Complexes. Journal of the American Chemical Society, 2016, 138, 14890-14904.	6.6	155
118	Palladium atalyzed Coupling Reactions: Carbonylative Heck Reactions To Give Chalcones. Angewandte Chemie - International Edition, 2010, 49, 5284-5288.	7.2	154
119	Palladium-Catalyzed Carbonylative Transformation of C(sp ³)–X Bonds. ACS Catalysis, 2014, 4, 2977-2989.	5.5	154
120	Molecularly Defined Manganese Pincer Complexes for Selective Transfer Hydrogenation of Ketones. ChemSusChem, 2017, 10, 83-86.	3.6	153
121	A More Efficient Catalyst for the Carbonylation of Chloroarenes. Angewandte Chemie - International Edition, 2001, 40, 2856-2859.	7.2	152
122	Development of a Ruthenium-Catalyzed Asymmetric Epoxidation Procedure with Hydrogen Peroxide as the Oxidant. Angewandte Chemie - International Edition, 2004, 43, 5255-5260.	7.2	151
123	Towards the development of a hydrogen battery. Energy and Environmental Science, 2012, 5, 8907.	15.6	151
124	Direct synthesis of adipic acid esters via palladium-catalyzed carbonylation of 1,3-dienes. Science, 2019, 366, 1514-1517.	6.0	151
125	Synthesis of $\hat{I}_{\pm}, \hat{I}_{-}$ unsaturated carbonyl compounds by carbonylation reactions. Chemical Society Reviews, 2020, 49, 3187-3210.	18.7	151
126	Chemoselective Transfer Hydrogenation to Nitroarenes Mediated by Cubaneâ€Type Mo ₃ S ₄ Cluster Catalysts. Angewandte Chemie - International Edition, 2012, 51, 7794-7798.	7.2	149

#	Article	IF	CITATIONS
127	Palladium-Catalyzed Formylation of Aryl Bromides: Elucidation of the Catalytic Cycle of an Industrially Applied Coupling Reaction. Journal of the American Chemical Society, 2008, 130, 15549-15563.	6.6	146
128	Selective Ruthenium atalyzed Nâ€Alkylation of Indoles by Using Alcohols. Chemistry - A European Journal, 2010, 16, 3590-3593.	1.7	146
129	Nitrogen-Doped Graphene-Activated Iron-Oxide-Based Nanocatalysts for Selective Transfer Hydrogenation of Nitroarenes. ACS Catalysis, 2015, 5, 1526-1529.	5.5	146
130	Convenient and Mild Epoxidation of Alkenes Using Heterogeneous Cobalt Oxide Catalysts. Angewandte Chemie - International Edition, 2014, 53, 4359-4363.	7.2	143
131	Highly active and efficient catalysts for alkoxycarbonylation of alkenes. Nature Communications, 2017, 8, 14117.	5.8	143
132	Zinc atalyzed Chemoselective Reduction of Tertiary and Secondary Amides to Amines. Chemistry - A European Journal, 2011, 17, 12186-12192.	1.7	142
133	Cooperative Iron–BrÃ,nsted Acid Catalysis: Enantioselective Hydrogenation of Quinoxalines and 2 <i>H</i> â€1,4â€Benzoxazines. Chemistry - A European Journal, 2013, 19, 4997-5003.	1.7	140
134	Cobalt–Pincer Complexes in Catalysis. Chemistry - A European Journal, 2019, 25, 122-143.	1.7	140
135	A General and Highly Selective Cobaltâ€Catalyzed Hydrogenation of Nâ€Heteroarenes under Mild Reaction Conditions. Angewandte Chemie - International Edition, 2017, 56, 3216-3220.	7.2	139
136	Photo- and Electrochemical Valorization of Carbon Dioxide Using Earth-Abundant Molecular Catalysts. Topics in Current Chemistry, 2018, 376, 1.	3.0	137
137	Single-Atom (Iron-Based) Catalysts: Synthesis and Applications. Chemical Reviews, 2021, 121, 13620-13697.	23.0	136
138	Synthesis of αâ€Amino Acid Amides: Rutheniumâ€Catalyzed Amination of αâ€Hydroxy Amides. Angewandte Chemie - International Edition, 2011, 50, 11197-11201.	7.2	135
139	A Stable Nanocobalt Catalyst with Highly Dispersed CoN _{<i>x</i>} Active Sites for the Selective Dehydrogenation of Formic Acid. Angewandte Chemie - International Edition, 2017, 56, 16616-16620.	7.2	135
140	Amidocarbonylation—An Efficient Route to Amino Acid Derivatives. Angewandte Chemie - International Edition, 2000, 39, 1010-1027.	7.2	133
141	Palladium atalyzed Carbonylations of Aryl Bromides using Paraformaldehyde: Synthesis of Aldehydes and Esters. Angewandte Chemie - International Edition, 2014, 53, 10090-10094.	7.2	133
142	Simple ruthenium-catalyzed reductive amination enables the synthesis of a broad range of primary amines. Nature Communications, 2018, 9, 4123.	5.8	132
143	Hydrogenation using iron oxide–based nanocatalysts for the synthesis of amines. Nature Protocols, 2015, 10, 548-557.	5.5	131
144	Synthesis of Single Atom Based Heterogeneous Platinum Catalysts: High Selectivity and Activity for Hydrosilylation Reactions. ACS Central Science, 2017, 3, 580-585.	5.3	130

#	Article	IF	CITATIONS
145	Homogeneous and heterogeneous catalytic reduction of amides and related compounds using molecular hydrogen. Nature Communications, 2020, 11, 3893.	5.8	130
146	Ruthenium-Catalyzed Hydroformylation/Reduction of Olefins to Alcohols: Extending the Scope to Internal Alkenes. Journal of the American Chemical Society, 2013, 135, 14306-14312.	6.6	128
147	Highly selective transfer hydrogenation of functionalised nitroarenes using cobalt-based nanocatalysts. Green Chemistry, 2015, 17, 898-902.	4.6	127
148	An Industrially Viable Catalyst System for Palladium-Catalyzed Telomerizations of 1,3-Butadiene with Alcohols. Chemistry - A European Journal, 2004, 10, 3891-3900.	1.7	125
149	Direct Catalytic N-Alkylation of Amines with Carboxylic Acids. Journal of the American Chemical Society, 2014, 136, 14314-14319.	6.6	125
150	Ironâ€Catalyzed Carbonylation: Selective and Efficient Synthesis of Succinimides. Angewandte Chemie - International Edition, 2009, 48, 6041-6044.	7.2	123
151	Ruthenium atalyzed Hydrogenation of Bicarbonate in Water. ChemSusChem, 2010, 3, 1048-1050.	3.6	123
152	Base-free hydrogen generation from methanol using a bi-catalytic system. Chemical Communications, 2014, 50, 707-709.	2.2	122
153	Selective Catalytic Monoreduction of Phthalimides and Imidazolidineâ€2,4â€diones. Angewandte Chemie - International Edition, 2011, 50, 9180-9184.	7.2	121
154	Development of a practical non-noble metal catalyst for hydrogenation of N-heteroarenes. Nature Catalysis, 2020, 3, 135-142.	16.1	120
155	A Novel and Convenient Synthesis of Benzonitriles: Electrophilic Cyanation of Aryl and Heteroaryl Bromides. Chemistry - A European Journal, 2011, 17, 4217-4222.	1.7	119
156	Palladium atalyzed Trifluoromethylation of (Hetero)Arenes with CF ₃ Br. Angewandte Chemie - International Edition, 2016, 55, 2782-2786.	7.2	119
157	A Biomimetic Iron Catalyst for the Epoxidation of Olefins with Molecular Oxygen at Room Temperature. Angewandte Chemie - International Edition, 2011, 50, 1425-1429.	7.2	118
158	Synthesis, Characterisation and Application of Iridium(III) Photosensitisers for Catalytic Water Reduction. Chemistry - A European Journal, 2011, 17, 6998-7006.	1.7	118
159	The scope and mechanism of palladium-catalysed Markovnikov alkoxycarbonylation of alkenes. Nature Chemistry, 2016, 8, 1159-1166.	6.6	118
160	Stable and Inert Cobalt Catalysts for Highly Selective and Practical Hydrogenation of C≡N and Câ•O Bonds. Journal of the American Chemical Society, 2016, 138, 8781-8788.	6.6	118
161	Synthesis of Primary Aromatic Amides by Aminocarbonylation of Aryl Halides Using Formamide as an Ammonia Synthon. Journal of Organic Chemistry, 2001, 66, 4311-4315.	1.7	117
162	Improved hydrogen generation from formic acid. Tetrahedron Letters, 2009, 50, 1603-1606.	0.7	117

#	Article	IF	CITATIONS
163	Towards a Practical Setup for Hydrogen Production from Formic Acid. ChemSusChem, 2013, 6, 1172-1176.	3.6	117
164	Improved Palladium atalyzed Sonogashira Coupling Reactions of Aryl Chlorides. Chemistry - A European Journal, 2009, 15, 1329-1336.	1.7	116
165	Intermetallic nickel silicide nanocatalyst—A non-noble metal–based general hydrogenation catalyst. Science Advances, 2018, 4, eaat0761.	4.7	116
166	Cobalt-based nanocatalysts for green oxidation and hydrogenation processes. Nature Protocols, 2015, 10, 916-926.	5.5	115
167	Saltâ€Free Synthesis of Tertiary Amines by Rutheniumâ€Catalyzed Amination of Alcohols. European Journal of Organic Chemistry, 2008, 2008, 4745-4750.	1.2	114
168	A General and Convenient Palladium atalyzed Carbonylative Sonogashira Coupling of Aryl Bromides. Chemistry - A European Journal, 2010, 16, 12104-12107.	1.7	113
169	Ruthenium-catalyzed hydrogen generation from glycerol and selective synthesis of lactic acid. Green Chemistry, 2015, 17, 193-198.	4.6	110
170	Selective Semihydrogenation of Alkynes with N-Graphitic-Modified Cobalt Nanoparticles Supported on Silica. ACS Catalysis, 2017, 7, 1526-1532.	5.5	110
171	<i>ortho</i> â€Metalation of Iron(0) Tribenzylphosphine Complexes: Homogeneous Catalysts for the Generation of Hydrogen from Formic Acid. Angewandte Chemie - International Edition, 2010, 49, 8993-8996.	7.2	109
172	Selective Reduction of Amides to Amines by Boronic Acid Catalyzed Hydrosilylation. Angewandte Chemie - International Edition, 2013, 52, 11577-11580.	7.2	109
173	Catalytic Methylation of Cĩ£¿H Bonds Using CO ₂ and H ₂ . Angewandte Chemie - International Edition, 2014, 53, 10476-10480.	7.2	108
174	Selective Catalytic Reductions of Amides and Nitriles to Amines. Topics in Catalysis, 2010, 53, 979-984.	1.3	107
175	General Catalytic Methylation of Amines with Formic Acid under Mild Reaction Conditions. Chemistry - A European Journal, 2014, 20, 7878-7883.	1.7	107
176	Coordination chemistry and mechanisms of metal-catalyzed CC-coupling reactions11For Part 6 of this series, see ref. [22] (a) Part 7. Heck vinylation of aryl halides with n-butyl acrylate: relevance of PC bond cleavage to catalyst deactivation. Journal of Molecular Catalysis A, 1995, 103, 133-146.	4.8	105
177	A General and Environmentally Benign Catalytic Reduction of Nitriles to Primary Amines. Chemistry - A European Journal, 2008, 14, 9491-9494.	1.7	105
178	A General and Selective Iron atalyzed Aminocarbonylation of Alkynes: Synthesis of Acryl―and Cinnamides. Angewandte Chemie - International Edition, 2011, 50, 537-541.	7.2	105
179	Photocatalytic Hydrogen Generation from Water with Iron Carbonyl Phosphine Complexes: Improved Water Reduction Catalysts and Mechanistic Insights. Chemistry - A European Journal, 2011, 17, 6425-6436.	1.7	105
180	Streamlined hydrogen production from biomass. Nature Catalysis, 2018, 1, 332-338.	16.1	105

#	Article	IF	CITATIONS
181	Improved Second Generation Iron Pincer Complexes for Effective Ester Hydrogenation. Advanced Synthesis and Catalysis, 2016, 358, 820-825.	2.1	104
182	Selective iron-catalyzed transfer hydrogenation of terminal alkynes. Chemical Communications, 2012, 48, 4827.	2.2	103
183	Baseâ€Controlled Selectivity in the Synthesis of Linear and Angular Fused Quinazolinones by a Palladiumâ€Catalyzed Carbonylation/Nucleophilic Aromatic Substitution Sequence. Angewandte Chemie - International Edition, 2014, 53, 7579-7583.	7.2	103
184	NHC-Based Iridium Catalysts for Hydrogenation and Dehydrogenation of N-Heteroarenes in Water under Mild Conditions. ACS Catalysis, 2018, 8, 17-21.	5.5	102
185	Catalytic Reductive Nâ€Alkylations Using CO ₂ and Carboxylic Acid Derivatives: Recent Progress and Developments. Angewandte Chemie - International Edition, 2019, 58, 12820-12838.	7.2	101
186	A Practical and Benign Synthesis of Primary Amines through Ruthenium atalyzed Reduction of Nitriles. ChemSusChem, 2008, 1, 1006-1010.	3.6	100
187	Direct Rutheniumâ€Catalyzed Hydrogenation of Carboxylic Acids to Alcohols. Angewandte Chemie - International Edition, 2015, 54, 10596-10599.	7.2	100
188	Towards a general ruthenium-catalyzed hydrogenation of secondary and tertiary amides to amines. Chemical Science, 2016, 7, 3432-3442.	3.7	100
189	From Olefins to Alcohols: Efficient and Regioselective Rutheniumâ€Catalyzed Domino Hydroformylation/Reduction Sequence. Angewandte Chemie - International Edition, 2013, 52, 2949-2953.	7.2	99
190	Ruthenium-catalyzed generation of hydrogen from iso-propanol. Tetrahedron Letters, 2005, 46, 1031-1034.	0.7	98
191	Rutheniumâ€catalyzed Selective Monoamination of Vicinal Diols. ChemSusChem, 2009, 2, 551-557.	3.6	98
192	Selective Methylation of Amines with Carbon Dioxide and H ₂ . Angewandte Chemie, 2013, 125, 12378-12382.	1.6	97
193	Ruthenium-Catalyzed Asymmetric Epoxidation of Olefins Using H2O2, Part II: Catalytic Activities and Mechanism. Chemistry - A European Journal, 2006, 12, 1875-1888.	1.7	96
194	Novel improved ruthenium catalysts for the generation of hydrogen from alcohols. Chemical Communications, 2007, , 522-524.	2.2	96
195	Earth-abundant photocatalytic systems for the visible-light-driven reduction of CO ₂ to CO. Green Chemistry, 2017, 19, 2356-2360.	4.6	96
196	Lewis Acid Promoted Ruthenium(II) atalyzed Etherifications by Selective Hydrogenation of Carboxylic Acids/Esters. Angewandte Chemie - International Edition, 2015, 54, 5196-5200.	7.2	94
197	Cooperative catalytic methoxycarbonylation of alkenes: uncovering the role of palladium complexes with hemilabile ligands. Chemical Science, 2018, 9, 2510-2516.	3.7	94
198	Palladium-Catalyzed Selective Generation of CO from Formic Acid for Carbonylation of Alkenes. Journal of the American Chemical Society, 2018, 140, 5217-5223.	6.6	94

#	Article	IF	CITATIONS
199	Reusable Nickel Nanoparticlesâ€Catalyzed Reductive Amination for Selective Synthesis of Primary Amines. Angewandte Chemie - International Edition, 2019, 58, 5064-5068.	7.2	94
200	Efficient palladium catalysts for the amination of aryl chlorides: a comparative study on the use of phosphium salts as precursors to bulky, electron-rich phosphines. Tetrahedron, 2005, 61, 9705-9709.	1.0	93
201	A general and selective copper-catalyzed reduction of secondary amides. Chemical Communications, 2012, 48, 2683.	2.2	93
202	Cooperative Catalysis with Iron and a Chiral BrÃ,nsted Acid for Asymmetric Reductive Amination of Ketones. Advanced Synthesis and Catalysis, 2014, 356, 3451-3455.	2.1	93
203	General and selective reductive amination of carbonyl compounds using a core–shell structured Co ₃ O ₄ /NGr@C catalyst. Green Chemistry, 2014, 16, 4535-4540.	4.6	93
204	Efficient and Regioselective Ruthenium-catalyzed Hydro-aminomethylation of Olefins. Journal of the American Chemical Society, 2013, 135, 3989-3996.	6.6	92
205	Convenient Method for Epoxidation of Alkenes Using Aqueous Hydrogen Peroxide. Organic Letters, 2005, 7, 987-990.	2.4	91
206	Iron(II) Pincer atalyzed Synthesis of Lactones and Lactams through a Versatile Dehydrogenative Domino Sequence. ChemCatChem, 2015, 7, 865-871.	1.8	91
207	Heteroleptic Copper Photosensitizers: Why an Extended π‧ystem Does Not Automatically Lead to Enhanced Hydrogen Production. Chemistry - A European Journal, 2017, 23, 312-319.	1.7	91
208	Hydroaminomethylation with Novel Rhodium–Carbene complexes: An Efficient Catalytic Approach to Pharmaceuticals. Chemistry - A European Journal, 2007, 13, 1594-1601.	1.7	90
209	Synthesis and Characterization of New Iridium Photosensitizers for Catalytic Hydrogen Generation from Water. Chemistry - A European Journal, 2012, 18, 3220-3225.	1.7	90
210	Hydrogenation of nitroarenes using defined iron–phosphine catalysts. Chemical Communications, 2013, 49, 9089.	2.2	90
211	Selective Palladium-Catalyzed Aminocarbonylation of 1,3-Dienes: Atom-Efficient Synthesis of β,γ-Unsaturated Amides. Journal of the American Chemical Society, 2014, 136, 16039-16043.	6.6	90
212	Selective Hydrogenation of Nitriles to Primary Amines by using a Cobalt Phosphine Catalyst. ChemSusChem, 2017, 10, 842-846.	3.6	90
213	Death and Rebirth: Photocatalytic Hydrogen Production by a Self-Organizing Copper–Iron System. ACS Catalysis, 2014, 4, 1845-1849.	5.5	89
214	Hydrogenation of Esters to Alcohols Catalyzed by Defined Manganese Pincer Complexes. Angewandte Chemie, 2016, 128, 15590-15594.	1.6	88
215	Development of Palladium–Carbene Catalysts for Telomerization and Dimerization of 1,3â€Đienes: From Basic Research to Industrial Applications. Chemistry - A European Journal, 2008, 14, 7408-7420.	1.7	87
216	A General and Efficient Iridium atalyzed Hydroformylation of Olefins. Angewandte Chemie - International Edition, 2011, 50, 280-284.	7.2	87

#	Article	IF	CITATIONS
217	Cobalt-based nanoparticles prepared from MOF–carbon templates as efficient hydrogenation catalysts. Chemical Science, 2018, 9, 8553-8560.	3.7	87
218	Reversible hydrogenation of carbon dioxide to formic acid using a Mn-pincer complex in the presence of lysine. Nature Energy, 2022, 7, 438-447.	19.8	87
219	N-Dealkylation of aliphatic amines and selective synthesis of monoalkylated aryl amines. Chemical Communications, 2008, , 3199.	2.2	86
220	Formic acid dehydrogenation catalysed by ruthenium complexes bearing the tripodal ligands triphos and NP ₃ . Dalton Transactions, 2013, 42, 2495-2501.	1.6	86
221	Palladium/di-1-adamantyl-n-butylphosphine-catalyzed reductive carbonylation of aryl and vinyl halides. Tetrahedron, 2007, 63, 6252-6258.	1.0	85
222	Formamidines – Versatile Ligands for Zincâ€Catalyzed Hydrosilylation and Ironâ€Catalyzed Epoxidation Reactions. European Journal of Organic Chemistry, 2010, 2010, 4893-4901.	1.2	85
223	Selective catalytic transfer hydrogenation of nitriles to primary amines using Pd/C. Catalysis Science and Technology, 2014, 4, 629.	2.1	85
224	Hydrogen generation: catalytic acceleration and control by light. Chemical Communications, 2009, , 4185.	2.2	84
225	Ligand-Controlled Palladium-Catalyzed Alkoxycarbonylation of Allenes: Regioselective Synthesis of α,β- and β,γ-Unsaturated Esters. Journal of the American Chemical Society, 2015, 137, 8556-8563.	6.6	84
226	A Biomassâ€Derived Nonâ€Noble Cobalt Catalyst for Selective Hydrodehalogenation of Alkyl and (Hetero)Aryl Halides. Angewandte Chemie - International Edition, 2017, 56, 11242-11247.	7.2	83
227	Selective cobalt nanoparticles for catalytic transfer hydrogenation of N-heteroarenes. Chemical Science, 2017, 8, 6239-6246.	3.7	83
228	Increasing the Scope of Palladium atalyzed Cyanations of Aryl Chlorides. Advanced Synthesis and Catalysis, 2009, 351, 643-648.	2.1	82
229	Selective catalytic hydrogenation of nitriles to primary amines using iron pincer complexes. Catalysis Science and Technology, 2016, 6, 4768-4772.	2.1	82
230	Ruthenium N-heterocyclic carbene catalysts for selective reduction of nitriles to primary amines. Tetrahedron Letters, 2009, 50, 3654-3656.	0.7	81
231	A Molecularly Defined Ironâ€Catalyst for the Selective Hydrogenation of α,βâ€Unsaturated Aldehydes. Chemistry - A European Journal, 2013, 19, 7701-7707.	1.7	81
232	Domino Catalysis: Palladium atalyzed Carbonylation of Allylic Alcohols to β,γâ€Unsaturated Esters. Angewandte Chemie - International Edition, 2013, 52, 8064-8068.	7.2	80
233	Heterogeneous Platinum atalyzed CH Perfluoroalkylation of Arenes and Heteroarenes. Angewandte Chemie - International Edition, 2015, 54, 4320-4324.	7.2	80
234	Manganese atalyzed Hydrogenâ€Autotransfer Câ^'C Bond Formation: αâ€Alkylation of Ketones with Primary Alcohols. Angewandte Chemie, 2016, 128, 15191-15195.	1.6	80

#	Article	IF	CITATIONS
235	Selective Earth-Abundant System for CO ₂ Reduction: Comparing Photo- and Electrocatalytic Processes. ACS Catalysis, 2019, 9, 2091-2100.	5.5	80
236	Development of a Ruthenium/Phosphite Catalyst System for Domino Hydroformylation–Reduction of Olefins with Carbon Dioxide. Chemistry - A European Journal, 2014, 20, 6888-6894.	1.7	79
237	(Enantio)selective Hydrogen Autotransfer: Rutheniumâ€Catalyzed Synthesis of Oxazolidinâ€2â€ones from Urea and Diols. Angewandte Chemie - International Edition, 2016, 55, 7826-7830.	7.2	79
238	Efficient Base-Free Hydrogenation of Amides to Alcohols and Amines Catalyzed by Well-Defined Pincer Imidazolyl–Ruthenium Complexes. ACS Catalysis, 2016, 6, 47-54.	5.5	79
239	Selective Palladiumâ€Catalyzed Hydroformylation of Alkynes to α,βâ€Unsaturated Aldehydes. Angewandte Chemie - International Edition, 2013, 52, 4645-4649.	7.2	78
240	Palladium atalyzed Hydroamidocarbonylation of Olefins to Imides. Angewandte Chemie - International Edition, 2015, 54, 10239-10243.	7.2	78
241	Convenient iron-catalyzed reductive aminations without hydrogen for selective synthesis of N-methylamines. Nature Communications, 2017, 8, 1344.	5.8	78
242	Fast and selective reduction of nitroarenes under visible light with an earth-abundant plasmonic photocatalyst. Nature Nanotechnology, 2022, 17, 485-492.	15.6	78
243	Zinc atalyzed Chemoselective Reduction of Esters to Alcohols. Chemistry - A European Journal, 2011, 17, 7414-7417.	1.7	76
244	Copperâ€Based Photosensitisers in Water Reduction: A More Efficient In Situ Formed System and Improved Mechanistic Understanding. Chemistry - A European Journal, 2016, 22, 1233-1238.	1.7	76
245	Palladium-Catalyzed Synthesis of Substituted Hydantoins—A New Carbonylation Reaction for the Synthesis of Amino Acid Derivatives. Angewandte Chemie - International Edition, 1999, 38, 1454-1457.	7.2	75
246	Ironâ€Catalyzed Synthesis of Secondary Amines: On the Way to Green Reductive Aminations. ChemSusChem, 2014, 7, 3012-3016.	3.6	75
247	Selective Palladium atalyzed Aminocarbonylation of Olefins to Branched Amides. Angewandte Chemie - International Edition, 2016, 55, 13544-13548.	7.2	75
248	Palladium-Catalyzed Amidocarbonylation—A New, Efficient Synthesis ofN-Acyl Amino Acids. Angewandte Chemie International Edition in English, 1997, 36, 1494-1496.	4.4	74
249	Rh(I)-Catalyzed Hydroamidation of Olefins via Selective Activation of N–H Bonds in Aliphatic Amines. Journal of the American Chemical Society, 2015, 137, 6053-6058.	6.6	74
250	Efficient Palladium atalyzed Alkoxycarbonylation of Bulk Industrial Olefins Using Ferrocenyl Phosphine Ligands. Angewandte Chemie - International Edition, 2017, 56, 5267-5271.	7.2	73
251	Control of Chemo- and Regioselectivity in the Palladium-Catalyzed Telomerization of Butadiene with Methanol â^' Catalysis and Mechanism. European Journal of Inorganic Chemistry, 2000, 2000, 1825-1832.	1.0	72
252	An Efficient and Practical Sequential Oneâ€Pot Synthesis of Suprofen, Ketoprofen and Other 2â€Arylpropionic Acids. Advanced Synthesis and Catalysis, 2008, 350, 2437-2442.	2.1	72

#	Article	IF	CITATIONS
253	Convenient Carbonylation of Aryl Bromides with Phenols to Form Aryl Esters by Applying a Palladium/Diâ€lâ€adamantylâ€ <i>n</i> â€butylphosphine Catalyst. ChemCatChem, 2010, 2, 509-513.	1.8	72
254	Catalytic N-Alkylation of Amines Using Carboxylic Acids and Molecular Hydrogen. Journal of the American Chemical Society, 2015, 137, 13580-13587.	6.6	72
255	Regioselective Pd atalyzed Methoxycarbonylation of Alkenes Using both Paraformaldehyde and Methanol as CO Surrogates. Angewandte Chemie - International Edition, 2015, 54, 4493-4497.	7.2	71
256	Palladium atalyzed Isomerization and Hydroformylation of Olefins. Chemistry - A European Journal, 2009, 15, 6383-6388.	1.7	70
257	Synthesis of <i>N</i> â€Heterocycles via Oxidantâ€Free Dehydrocyclization of Alcohols Using Heterogeneous Catalysts. Angewandte Chemie - International Edition, 2021, 60, 25188-25202.	7.2	70
258	An Easy and General Ironâ€catalyzed Reductive Amination of Aldehydes and Ketones with Anilines. Chemistry - an Asian Journal, 2011, 6, 2240-2245.	1.7	69
259	Hydrogen autotransfer and related dehydrogenative coupling reactions using a rhenium(<scp>i</scp>) pincer catalyst. Chemical Communications, 2017, 53, 3265-3268.	2.2	69
260	A New Multicomponent Coupling of Aldehydes, Amides, and Dienophiles:Â Atom-Efficient One-Pot Synthesis of Highly Substituted Cyclohexenes and Cyclohexadienes. Journal of the American Chemical Society, 2001, 123, 8398-8399.	6.6	68
261	Synthesis of Carboxylic Acids by Palladium atalyzed Hydroxycarbonylation. Angewandte Chemie - International Edition, 2019, 58, 14365-14373.	7.2	68
262	A Unique Palladium Catalyst for Efficient and Selective Alkoxycarbonylation of Olefins with Formates. ChemSusChem, 2013, 6, 417-420.	3.6	67
263	Towards a Sustainable Synthesis of Formate Salts: Combined Catalytic Methanol Dehydrogenation and Bicarbonate Hydrogenation. Angewandte Chemie - International Edition, 2014, 53, 7085-7088.	7.2	67
264	(E)-α,β-unsaturated amides from tertiary amines, olefins and CO via Pd/Cu-catalyzed aerobic oxidative N-dealkylation. Chemical Communications, 2015, 51, 3247-3250.	2.2	67
265	Selective Palladium-Catalyzed Carbonylation of Alkynes: An Atom-Economic Synthesis of 1,4-Dicarboxylic Acid Diesters. Journal of the American Chemical Society, 2018, 140, 10282-10288.	6.6	67
266	Recent Progress in Transition-Metal-Catalyzed Asymmetric Reductive Amination. ACS Catalysis, 2021, 11, 13809-13837.	5.5	67
267	Benign Catalysis with Iron: Unique Selectivity in Catalytic Isomerization Reactions of Olefins. ChemSusChem, 2012, 5, 734-739.	3.6	66
268	"Nanorustâ€â€€atalyzed Benign Oxidation of Amines for Selective Synthesis of Nitriles. ChemSusChem, 2015, 8, 92-96.	3.6	66
269	Synthesis of Nickel Nanoparticles with Nâ€Doped Graphene Shells for Catalytic Reduction Reactions. ChemCatChem, 2016, 8, 129-134.	1.8	66
270	Biomassâ€Derived Catalysts for Selective Hydrogenation of Nitroarenes. ChemSusChem, 2017, 10, 3035-3039.	3.6	66

#	Article	IF	CITATIONS
271	Progress in Carbonylativeâ€Heck Reactions of Aryl Bromides: Catalysis and DFT Studies. ChemCatChem, 2011, 3, 726-733.	1.8	65
272	Iridium atalyzed Hydrogenation of Carboxylic Acid Esters. ChemCatChem, 2014, 6, 2810-2814.	1.8	65
273	Co-based heterogeneous catalysts from well-defined α-diimine complexes: Discussing the role of nitrogen. Journal of Catalysis, 2017, 351, 79-89.	3.1	65
274	Silica-supported Fe/Fe–O nanoparticles for the catalytic hydrogenation of nitriles to amines in the presence of aluminium additives. Nature Catalysis, 2022, 5, 20-29.	16.1	65
275	Efficient and Selective Hydrogen Generation from Bioethanol using Ruthenium Pincerâ€ŧype Complexes. ChemSusChem, 2014, 7, 2419-2422.	3.6	64
276	Manganese(I)â€Catalyzed Enantioselective Hydrogenation of Ketones Using a Defined Chiral PNP Pincer Ligand. Angewandte Chemie, 2017, 129, 11389-11393.	1.6	64
277	Synthesis and Crystal Structure of Palladium(0) and Arylpalladium(II) Bromide Complexes of Cata <i>CX</i> ium A. Organometallics, 2008, 27, 297-300.	1.1	63
278	Design of and Mechanistic Studies on a Biomimetic Iron–Imidazole Catalyst System for Epoxidation of Olefins with Hydrogen Peroxide. Chemistry - A European Journal, 2009, 15, 5471-5481.	1.7	63
279	Cobalt Pincer Complexes for Catalytic Reduction of Carboxylic Acid Esters. Chemistry - A European Journal, 2018, 24, 1046-1052.	1.7	63
280	A robust iron catalyst for the selective hydrogenation of substituted (iso)quinolones. Chemical Science, 2018, 9, 8134-8141.	3.7	63
281	Ein praktikables Verfahren zur Palladium-katalysierten Cyanierung von Arylhalogeniden. Angewandte Chemie, 2003, 115, 1700-1703.	1.6	62
282	Ironâ€Catalyzed Epoxidation of Aromatic Olefins and 1,3â€Dienes. Advanced Synthesis and Catalysis, 2010, 352, 1771-1778.	2.1	62
283	Copper-catalyzed reductive amination of aromatic and aliphatic ketones with anilines using environmental-friendly molecular hydrogen. Green Chemistry, 2012, 14, 2371.	4.6	62
284	Towards the Development of a Selective Ruthenium atalyzed Hydroformylation of Olefins. Chemistry - A European Journal, 2013, 19, 10589-10594.	1.7	62
285	Synthese, Charakterisierung und Anwendungen von Metallâ€Nanopartikeln nach Fixierung auf Nâ€dotiertem Kohlenstoff: Katalyse jenseits der Elektrochemie. Angewandte Chemie, 2016, 128, 12770-12783.	1.6	62
286	Molecularly Defined Manganese Catalyst for Low-Temperature Hydrogenation of Carbon Monoxide to Methanol. Journal of the American Chemical Society, 2019, 141, 16923-16929.	6.6	62
287	Substitution ontrolled Excited State Processes in Heteroleptic Copper(I) Photosensitizers Used in Hydrogen Evolving Systems. ChemPhysChem, 2014, 15, 3709-3713.	1.0	61
288	Fe ₂ O ₃ /NGr@C- and Co–Co ₃ O ₄ /NGr@C-catalysed hydrogenation of nitroarenes under mild conditions. Catalysis Science and Technology, 2016, 6, 4473-4477.	2.1	61

#	Article	IF	CITATIONS
289	Efficient Synthesis of Biologically Interesting 3,4â€Diarylâ€&ubstituted Succinimides and Maleimides: Application of Ironâ€Catalyzed Carbonylations. Chemistry - A European Journal, 2010, 16, 9606-9615.	1.7	60
290	Synthesis of Amines by Reductive Amination of Aldehydes and Ketones using Co ₃ O ₄ /NGr@C Catalyst. ChemCatChem, 2015, 7, 62-64.	1.8	60
291	A general protocol for the reductive N-methylation of amines using dimethyl carbonate and molecular hydrogen: mechanistic insights and kinetic studies. Catalysis Science and Technology, 2016, 6, 7956-7966.	2.1	60
292	Lowâ€Temperature Hydrogenation of Carbon Dioxide to Methanol with a Homogeneous Cobalt Catalyst. Angewandte Chemie, 2017, 129, 1916-1919.	1.6	60
293	Insights into the Mechanism of Photocatalytic Water Reduction by DFTâ€Supported In Situ EPR/Raman Spectroscopy. Angewandte Chemie - International Edition, 2011, 50, 10246-10250.	7.2	59
294	Discrete Iron Complexes for the Selective Catalytic Reduction of Aromatic, Aliphatic, and α,βâ€Unsaturated Aldehydes under Water–Gas Shift Conditions. Chemistry - A European Journal, 2012, 18, 15935-15939.	1.7	59
295	Ruthenium atalyzed Synthesis of Indoles from Anilines and Epoxides. Chemistry - A European Journal, 2014, 20, 1818-1824.	1.7	59
296	Iron-catalysed regioselective hydrogenation of terminal epoxides to alcohols under mild conditions. Nature Catalysis, 2019, 2, 523-528.	16.1	59
297	Nickel atalyzed Stereodivergent Synthesis of <i>E</i> ―and <i>Z</i> â€Alkenes by Hydrogenation of Alkynes. ChemSusChem, 2019, 12, 3363-3369.	3.6	59
298	Palladium atalyzed Methylation of Nitroarenes with Methanol. Angewandte Chemie - International Edition, 2019, 58, 5417-5421.	7.2	59
299	Hydrogen production from formic acid catalyzed by a phosphine free manganese complex: investigation and mechanistic insights. Green Chemistry, 2020, 22, 913-920.	4.6	59
300	Iron-catalyzed photoreduction of carbon dioxide to synthesis gas. Catalysis Science and Technology, 2016, 6, 3623-3630.	2.1	58
301	Homogeneous Catalytic Hydrogenation of CO ₂ to Methanol – Improvements with Tailored Ligands. Advanced Synthesis and Catalysis, 2019, 361, 374-379.	2.1	58
302	Introduction: First Row Metals and Catalysis. Chemical Reviews, 2019, 119, 2089-2089.	23.0	58
303	A General Catalyst Based on Cobalt Core–Shell Nanoparticles for the Hydrogenation of Nâ€Heteroarenes Including Pyridines. Angewandte Chemie - International Edition, 2020, 59, 17408-17412.	7.2	58
304	Homogeneous cobalt-catalyzed reductive amination for synthesis of functionalized primary amines. Nature Communications, 2019, 10, 5443.	5.8	57
305	Fast and selective iron-catalyzed transfer hydrogenations of aldehydes. Journal of Organometallic Chemistry, 2013, 744, 156-159.	0.8	56
306	Selective Rhodiumâ€Catalyzed Reduction of Tertiary Amides in Amino Acid Esters and Peptides. Angewandte Chemie - International Edition, 2015, 54, 12389-12393.	7.2	56

#	Article	IF	CITATIONS
307	General and Chemoselective Copper Oxide Catalysts for Hydrogenation Reactions. ACS Catalysis, 2019, 9, 4302-4307.	5.5	56
308	Reductive amination using cobalt-based nanoparticles for synthesis of amines. Nature Protocols, 2020, 15, 1313-1337.	5.5	56
309	Scalable and selective deuteration of (hetero)arenes. Nature Chemistry, 2022, 14, 334-341.	6.6	56
310	Chemistry Future: Priorities and Opportunities from the Sustainability Perspective. ChemSusChem, 2017, 10, 6-13.	3.6	55
311	Palladium-Catalyzed Reactions for the Synthesis of Fine Chemicals, 16 - Highly Efficient Palladium-Catalyzed Telomerization of Butadiene with Methanol. Advanced Synthesis and Catalysis, 2001, 343, 29-33.	2.1	54
312	Recent Innovative Strategies for the Synthesis of Amines: From CN Bond Formation to CN Bond Activation. ChemSusChem, 2009, 2, 715-717.	3.6	54
313	Palladium atalyzed Carbonylative Heck Reaction of Aryl Bromides with Vinyl Ethers to 3â€Alkoxy Alkenones and Pyrazoles. Chemistry - A European Journal, 2012, 18, 4827-4831.	1.7	54
314	A General and Highly Selective Cobaltâ€Catalyzed Hydrogenation of Nâ€Heteroarenes under Mild Reaction Conditions. Angewandte Chemie, 2017, 129, 3264-3268.	1.6	54
315	Cobalt atalyzed Aqueous Dehydrogenation of Formic Acid. Chemistry - A European Journal, 2019, 25, 8459-8464.	1.7	54
316	Efficient Chemoenzymatic Synthesis of Enantiomerically Pure α-Amino Acids. Chemistry - A European Journal, 1998, 4, 935-941.	1.7	53
317	Towards a Practical and Efficient Copper-Catalyzed Trifluoromethylation of Aryl Halides. Topics in Catalysis, 2012, 55, 426-431.	1.3	53
318	Photocatalytic Hydrogen Production with Copper Photosensitizer–Titanium Dioxide Composites. ChemCatChem, 2014, 6, 82-86.	1.8	53
319	Baseâ€Free Nonâ€Nobleâ€Metal atalyzed Hydrogen Generation from Formic Acid: Scope and Mechanistic Insights. Chemistry - A European Journal, 2014, 20, 13589-13602.	1.7	53
320	NNPâ€Type Pincer Imidazolylphosphine Ruthenium Complexes: Efficient Baseâ€Free Hydrogenation of Aromatic and Aliphatic Nitriles under Mild Conditions. Chemistry - A European Journal, 2016, 22, 4991-5002.	1.7	53
321	Highly active and selective photochemical reduction of CO ₂ to CO using molecular-defined cyclopentadienone iron complexes. Chemical Communications, 2016, 52, 8393-8396.	2.2	53
322	Pdâ€Catalyzed Selective Carbonylation of <i>gem</i> â€Difluoroalkenes: A Practical Synthesis of Difluoromethylated Esters. Angewandte Chemie - International Edition, 2019, 58, 4690-4694.	7.2	53
323	Phosphine–Imidazolyl Ligands for the Efficient Ruthenium atalyzed Hydrogenation of Carboxylic Esters. Chemistry - A European Journal, 2012, 18, 9011-9018.	1.7	52
324	Cobalt-Nanoparticles Catalyzed Efficient and Selective Hydrogenation of Aromatic Hydrocarbons. ACS Catalysis, 2019, 9, 8581-8591.	5.5	52

#	Article	IF	CITATIONS
325	Efficient iron single-atom catalysts for selective ammoxidation of alcohols to nitriles. Nature Communications, 2022, 13, 1848.	5.8	52
326	Hydrogenation of Aliphatic and Aromatic Nitriles Using a Defined Ruthenium PNP Pincer Catalyst. European Journal of Organic Chemistry, 2015, 2015, 5944-5948.	1.2	51
327	Combining Isocyanides with Carbon Dioxide in Palladium-Catalyzed Heterocycle Synthesis: N3-Substituted Quinazoline-2,4(1H,3H)-diones via a Three-Component Reaction. ACS Catalysis, 2017, 7, 5549-5556.	5.5	51
328	Stereoselective Synthesis of Highly Substituted Conjugated Dienes via Pdâ€Catalyzed Carbonylation of 1,3â€Diynes. Angewandte Chemie - International Edition, 2019, 58, 10683-10687.	7.2	51
329	State-of-the-art palladium-catalyzed alkoxycarbonylations. Organic Chemistry Frontiers, 2021, 8, 799-811.	2.3	51
330	Efficient catalysts for telomerization of butadiene with amines. Tetrahedron Letters, 2007, 48, 9203-9207.	0.7	50
331	Palladium Catalysts for the Formylation of Vinyl Triflates To Form α,βâ€Unsaturated Aldehydes. Angewandte Chemie - International Edition, 2008, 47, 4887-4891.	7.2	50
332	A stable and practical nickel catalyst for the hydrogenolysis of C–O bonds. Green Chemistry, 2017, 19, 305-310.	4.6	49
333	Phosphine―and Hydrogenâ€Free: Highly Regioselective Rutheniumâ€Catalyzed Hydroaminomethylation of Olefins. Angewandte Chemie - International Edition, 2014, 53, 7320-7323.	7.2	48
334	Improving the Efficiency of the Hydrogenation of Carbonates and Carbon Dioxide to Methanol. ChemCatChem, 2013, 5, 1072-1074.	1.8	47
335	From Internal Olefins to Linear Amines: Ruthenium-Catalyzed Domino Water–Gas Shift/Hydroaminomethylation Sequence. ACS Catalysis, 2016, 6, 907-912.	5.5	47
336	Functionalization of Unactivated C(sp ³)â^'H Bonds Using Metal arbene Insertion Reactions. Angewandte Chemie - International Edition, 2017, 56, 46-48.	7.2	47
337	Heterogeneous nickel-catalysed reversible, acceptorless dehydrogenation of N-heterocycles for hydrogen storage. Chemical Communications, 2019, 55, 4969-4972.	2.2	47
338	Ruthenium/Imidazolylphosphine Catalysis: Hydrogenation of Aliphatic and Aromatic Nitriles to Form Amines. Chemistry - A European Journal, 2014, 20, 4227-4231.	1.7	46
339	Cobalt-catalysed transfer hydrogenation of quinolines and related heterocycles using formic acid under mild conditions. Catalysis Science and Technology, 2017, 7, 1981-1985.	2.1	46
340	Nickel-catalyzed hydrogenative coupling of nitriles and amines for general amine synthesis. Science, 2022, 376, 1433-1441.	6.0	46
341	Efficient Palladium-Catalyzed Alkoxycarbonylation of N-Heteroaryl Chlorides - A Practical Synthesis of Building Blocks for Pharmaceuticals and Herbicides. Synthesis, 2001, 2001, 1098.	1.2	45
342	Übergangsmetallkatalysierte Nutzung von Methanol als C ₁ â€Quelle in der organischen Synthese. Angewandte Chemie, 2017, 129, 6482-6492.	1.6	45

#	Article	IF	CITATIONS
343	A Unified Research Data Infrastructure for Catalysis Research – Challenges and Concepts. ChemCatChem, 2021, 13, 3223-3236.	1.8	45
344	Tailored Palladium Catalysts for Selective Synthesis of Conjugated Enynes by Monocarbonylation of 1,3â€Ðiynes. Angewandte Chemie - International Edition, 2020, 59, 9032-9040.	7.2	45
345	Electron- and Energy-Transfer Processes in a Photocatalytic System Based on an Ir(III)-Photosensitizer and an Iron Catalyst. Journal of Physical Chemistry Letters, 2014, 5, 1355-1360.	2.1	44
346	A new improved palladium-catalyzed amidocarbonylation. Tetrahedron Letters, 1999, 40, 4523-4526.	0.7	43
347	Ultra-small cobalt nanoparticles from molecularly-defined Co–salen complexes for catalytic synthesis of amines. Chemical Science, 2020, 11, 2973-2981.	3.7	43
348	Chemoselective semihydrogenation of alkynes catalyzed by manganese(<scp>i</scp>)-PNP pincer complexes. Catalysis Science and Technology, 2020, 10, 3994-4001.	2.1	43
349	Palladium atalyzed Carbonylations of Aryl Bromides using Paraformaldehyde: Synthesis of Aldehydes and Esters. Angewandte Chemie, 2014, 126, 10254-10258.	1.6	42
350	Palladiumâ€Catalyzed Alkoxycarbonylation of Conjugated Dienes under Acidâ€Free Conditions: Atomâ€Economic Synthesis of β,γâ€Unsaturated Esters. Angewandte Chemie - International Edition, 2014, 53, 9030-9034.	7.2	42
351	Palladium atalyzed Carbonylation of <i>sec</i> ―and <i>tert</i> â€Alcohols. Angewandte Chemie - International Edition, 2017, 56, 6203-6207.	7.2	42
352	Hydrogenation of Pyridines Using a Nitrogenâ€Modified Titaniaâ€6upported Cobalt Catalyst. Angewandte Chemie - International Edition, 2018, 57, 14488-14492.	7.2	42
353	Ironâ€Catalyzed Carbonylation as a Key Step in the Short and Efficient Syntheses of Himanimide A and B. Chemistry - an Asian Journal, 2010, 5, 2173-2176.	1.7	41
354	Iridium–PNP Pincer Complexes for Methanol Dehydrogenation at Low Base Concentration. ChemCatChem, 2017, 9, 1891-1896.	1.8	41
355	Cyclopentadienone iron complexes as efficient and selective catalysts for the electroreduction of CO ₂ to CO. Catalysis Science and Technology, 2017, 7, 459-465.	2.1	41
356	Structureâ€Activated Copper Photosensitisers for Photocatalytic Water Reduction. Chemistry - A European Journal, 2017, 23, 3631-3636.	1.7	41
357	Highly selective hydrogenation of amides catalysed by a molybdenum pincer complex: scope and mechanism. Chemical Science, 2019, 10, 10566-10576.	3.7	41
358	Towards the Efficient Development of Homogeneous Catalytic Transformation to γâ€Valerolactone from Biomassâ€Derived Platform Chemicals. ChemCatChem, 2014, 6, 3360-3365.	1.8	40
359	Spin density distribution after electron transfer from triethylamine to an [Ir(ppy)2(bpy)]+ photosensitizer during photocatalytic water reduction. Physical Chemistry Chemical Physics, 2014, 16, 4789.	1.3	40
360	Palladiumâ€Catalyzed Trifluoromethylation of (Hetero)Arenes with CF ₃ Br. Angewandte Chemie, 2016, 128, 2832-2836.	1.6	40

#	Article	IF	CITATIONS
361	Nonâ€Pincerâ€Type Manganese Complexes as Efficient Catalysts for the Hydrogenation of Esters. Angewandte Chemie, 2017, 129, 7639-7642.	1.6	40
362	Cobalt-catalysed reductive C–H alkylation of indoles using carboxylic acids and molecular hydrogen. Chemical Science, 2017, 8, 6439-6450.	3.7	40
363	Manganese Catalyzed Asymmetric Transfer Hydrogenation of Ketones Using Chiral Oxamide Ligands. Synlett, 2019, 30, 503-507.	1.0	39
364	Role of endoplasmic reticulum stress and protein misfolding in disorders of the liver and pancreas. Advances in Medical Sciences, 2019, 64, 315-323.	0.9	39
365	Palladiumâ€Catalyzed Reductive Carbonylation of Aryl Bromides with Phosphinite Ligands. Chemistry - an Asian Journal, 2012, 7, 2213-2216.	1.7	38
366	A comparative computationally study about the defined m(II) pincer hydrogenation catalysts (m = fe, ru,) ŢjĘTQq(0,0 rgBT /O
367	Selective reductive amination of aldehydes from nitro compounds catalyzed by molybdenum sulfide clusters. Green Chemistry, 2017, 19, 3764-3768.	4.6	38
368	Tailored Cobalt atalysts for Reductive Alkylation of Anilines with Carboxylic Acids under Mild Conditions. Angewandte Chemie - International Edition, 2018, 57, 11673-11677.	7.2	38
369	Catalytic oxidations by dehydrogenation of alkanes, alcohols and amines with defined (non)-noble metal pincer complexes. Catalysis Science and Technology, 2020, 10, 3825-3842.	2.1	38
370	Heteroleptic copper complexes with nitrogen and phosphorus ligands in photocatalysis: Overview and perspectives. Chem Catalysis, 2021, 1, 298-338.	2.9	38
371	Molecular Catalysts for the Reductive Homocoupling of CO ₂ towards C ₂₊ Compounds. Angewandte Chemie - International Edition, 2022, 61, .	7.2	38
372	Palladium-Catalyzed Methoxycarbonylation of 1,3-Butadiene: Catalysis and Mechanistic Studies. Advanced Synthesis and Catalysis, 2002, 344, 517.	2.1	37
373	(Enantio)selective Hydrogen Autotransfer: Rutheniumâ€Catalyzed Synthesis of Oxazolidinâ€2â€ones from Urea and Diols. Angewandte Chemie, 2016, 128, 7957-7961.	1.6	37
374	A Stable Manganese Pincer Catalyst for the Selective Dehydrogenation of Methanol. Angewandte Chemie, 2017, 129, 574-577.	1.6	37
375	Efficient and selective Palladium atalyzed Telomerization of 1,3â€Butadiene with Carbon Dioxide. ChemCatChem, 2017, 9, 542-546.	1.8	37
376	Hydrogenation of terminal and internal olefins using a biowaste-derived heterogeneous cobalt catalyst. Science Advances, 2018, 4, eaau1248.	4.7	37
377	Enantioselective Hydrogenation of Ketones using Different Metal Complexes with a Chiral PNP Pincer Ligand. Advanced Synthesis and Catalysis, 2019, 361, 1913-1920.	2.1	37
378	Selective Acceptorless Dehydrogenation of Primary Amines to Imines by Core–Shell Cobalt Nanoparticles. Angewandte Chemie - International Edition, 2020, 59, 7501-7507.	7.2	37

#	Article	IF	CITATIONS
379	A "universal―catalyst for aerobic oxidations to synthesize (hetero)aromatic aldehydes, ketones, esters, acids, nitriles, and amides. CheM, 2022, 8, 508-531.	5.8	37
380	Convenient Reductive Methylation of Amines with Carbonates at Room Temperature. Chemistry - A European Journal, 2015, 21, 16759-16763.	1.7	36
381	A Mild and Chemoselective Reduction of Nitro and Azo Compounds Catalyzed by a Wellâ€Đefined Mo ₃ S ₄ Cluster Bearing Diamine Ligands. ChemCatChem, 2015, 7, 2675-2681.	1.8	36
382	Ruthenium pincer-catalyzed synthesis of substituted γ-butyrolactones using hydrogen autotransfer methodology. Chemical Communications, 2015, 51, 13082-13085.	2.2	36
383	Chemoselective Hydrogenation of Nitroarenes Catalyzed by Molybdenum Sulphide Clusters. ChemCatChem, 2017, 9, 1128-1134.	1.8	36
384	Efficient Palladium atalyzed Alkoxycarbonylation of Bulk Industrial Olefins Using Ferrocenyl Phosphine Ligands. Angewandte Chemie, 2017, 129, 5351-5355.	1.6	35
385	Reusable Co-nanoparticles for general and selective <i>N</i> -alkylation of amines and ammonia with alcohols. Chemical Science, 2021, 13, 111-117.	3.7	35
386	A new class of catalysts with superior activity and selectivity for amidocarbonylation reactions1Part 4 of the series Palladium-Catalyzed Reactions for Fine Chemical Synthesis. For Part 3, see Ref. [1].1. Journal of Molecular Catalysis A, 1998, 135, 23-33.	4.8	34
387	A Mild and Baseâ€Free Protocol for the Rutheniumâ€Catalyzed Hydrogenation of Aliphatic and Aromatic Nitriles with Tridentate Phosphine Ligands. ChemCatChem, 2016, 8, 1329-1334.	1.8	34
388	A General and Selective Rhodium atalyzed Reduction of Amides, <i>N</i> â€Acyl Amino Esters, and Dipeptides Using Phenylsilane. Chemistry - A European Journal, 2016, 22, 7050-7053.	1.7	34
389	Synthesis of cobalt nanoparticles by pyrolysis of vitamin B ₁₂ : a non-noble-metal catalyst for efficient hydrogenation of nitriles. Catalysis Science and Technology, 2018, 8, 499-507.	2.1	34
390	Superior activity and selectivity of heterogenized cobalt catalysts for hydrogenation of nitroarenes. Catalysis Science and Technology, 2019, 9, 157-162.	2.1	34
391	Supported Cobalt Nanoparticles for Hydroformylation Reactions. Chemistry - A European Journal, 2019, 25, 5534-5538.	1.7	34
392	An amino acid based system for CO ₂ capture and catalytic utilization to produce formates. Chemical Science, 2021, 12, 6020-6024.	3.7	34
393	Ironâ€Catalyzed Synthesis of Fiveâ€Membered Cyclic Carbonates from Vicinal Diols: Urea as Sustainable Carbonylation Agent. European Journal of Organic Chemistry, 2016, 2016, 3721-3727.	1.2	33
394	Markovnikovâ€6elective Palladium Catalyst for Carbonylation of Alkynes with Heteroarenes. Angewandte Chemie - International Edition, 2017, 56, 11976-11980.	7.2	33
395	Efficient and Selective <i>N</i> â€Methylation of Nitroarenes under Mild Reaction Conditions. Chemistry - A European Journal, 2017, 23, 13205-13212.	1.7	33
396	A Stable Nanocobalt Catalyst with Highly Dispersed CoN _{<i>x</i>} Active Sites for the Selective Dehydrogenation of Formic Acid. Angewandte Chemie, 2017, 129, 16843-16847.	1.6	33

#	Article	IF	CITATIONS
397	Light to Hydrogen: Photocatalytic Hydrogen Generation from Water with Molecularly-Defined Iron Complexes. Inorganics, 2017, 5, 14.	1.2	33
398	A General, Activatorâ€Free Palladium atalyzed Synthesis of Arylacetic and Benzoic Acids from Formic Acid. Angewandte Chemie - International Edition, 2018, 57, 6910-6914.	7.2	33
399	Efficient palladium-catalyzed synthesis of 3-aryl-4-indolylmaleimides. Organic and Biomolecular Chemistry, 2008, 6, 992.	1.5	32
400	Efficient palladium-catalyzed double carbonylation of o-dibromobenzenes: synthesis of thalidomide. Organic and Biomolecular Chemistry, 2014, 12, 5578-5581.	1.5	32
401	Exploring the mechanisms of aqueous methanol dehydrogenation catalyzed by defined PNP Mn and Re pincer complexes under base-free as well as strong base conditions. Catalysis Science and Technology, 2018, 8, 3649-3665.	2.1	32
402	Catalytic Dehydrogenation of Formic Acid with Rutheniumâ€PNPâ€Pincer Complexes: Comparing Nâ€Methylated and NHâ€Ligands. ChemCatChem, 2019, 11, 1910-1914.	1.8	32
403	Reusable Nickel Nanoparticlesâ€Catalyzed Reductive Amination for Selective Synthesis of Primary Amines. Angewandte Chemie, 2019, 131, 5118-5122.	1.6	32
404	Inner- versus Outer-Sphere Ru-Catalyzed Formic Acid Dehydrogenation: A Computational Study. Organometallics, 2013, 32, 7053-7064.	1.1	31
405	Unprecedented selective homogeneous cobalt-catalysed reductive alkoxylation of cyclic imides under mild conditions. Chemical Science, 2017, 8, 5536-5546.	3.7	31
406	Practical Catalytic Cleavage of C(sp ³)â^'C(sp ³) Bonds in Amines. Angewandte Chemie - International Edition, 2019, 58, 10693-10697.	7.2	31
407	Cobalt pincer complexes for catalytic reduction of nitriles to primary amines. Catalysis Science and Technology, 2019, 9, 1779-1783.	2.1	31
408	Tuning the Selectivity of Palladium Catalysts for Hydroformylation and Semihydrogenation of Alkynes: Experimental and Mechanistic Studies. ACS Catalysis, 2020, 10, 12167-12181.	5.5	31
409	Palladium-Catalyzed Synthesis of Alkylated Amines from Aryl Ethers or Phenols. ACS Catalysis, 2016, 6, 7834-7838.	5.5	30
410	Esters, Including Triglycerides, and Hydrogen as Feedstocks for the Ruthenium atalyzed Direct Nâ€Alkylation of Amines. Angewandte Chemie - International Edition, 2016, 55, 11049-11053.	7.2	30
411	Monodisperse nickel-nanoparticles for stereo- and chemoselective hydrogenation of alkynes to alkenes. Journal of Catalysis, 2019, 370, 372-377.	3.1	30
412	Ambient Hydrogenation and Deuteration of Alkenes Using a Nanostructured Ni ore–Shell Catalyst. Angewandte Chemie - International Edition, 2021, 60, 18591-18598.	7.2	30
413	Cobalt single-atom catalysts for domino reductive amination and amidation of levulinic acid and related molecules to N-heterocycles. Chem Catalysis, 2022, 2, 178-194.	2.9	30
414	Synthesis of N-Acetyl-α-aminobutyric Acid via Amidocarbonylation: A Case Study. Advanced Synthesis and Catalysis, 2003, 345, 510-516.	2.1	29

#	Article	IF	CITATIONS
415	Design of a bio-inspired imidazole-based iron catalyst for epoxidation of olefins: Mechanistic insights. Catalysis Today, 2010, 157, 364-370.	2.2	29
416	Selective Ruthenium atalyzed Reductive Alkoxylation and Amination of Cyclic Imides. Angewandte Chemie - International Edition, 2016, 55, 387-391.	7.2	29
417	Ultrafast excited state dynamics of iridium(<scp>iii</scp>) complexes and their changes upon immobilisation onto titanium dioxide layers. Physical Chemistry Chemical Physics, 2016, 18, 10682-10687.	1.3	29
418	Towards Hydrogen Storage through an Efficient Rutheniumâ€Catalyzed Dehydrogenation of Formic Acid. ChemSusChem, 2018, 11, 2077-2082.	3.6	29
419	Dual Rhâ^'Ru Catalysts for Reductive Hydroformylation of Olefins to Alcohols. ChemSusChem, 2018, 11, 2310-2314.	3.6	29
420	3,3-Difluoroallyl ammonium salts: highly versatile, stable and selective gem-difluoroallylation reagents. Nature Communications, 2021, 12, 3257.	5.8	29
421	General and selective synthesis of primary amines using Ni-based homogeneous catalysts. Chemical Science, 2020, 11, 4332-4339.	3.7	29
422	Photochemical Reduction of Carbon Dioxide to Formic Acid using Ruthenium(II)â€Based Catalysts and Visible Light. ChemCatChem, 2015, 7, 3316-3321.	1.8	28
423	Palladium atalyzed Aminocarbonylation of Allylic Alcohols. Chemistry - A European Journal, 2016, 22, 10050-10056.	1.7	28
424	Efficient methylation of anilines with methanol catalysed by cyclometalated ruthenium complexes. Catalysis Science and Technology, 2021, 11, 2512-2517.	2.1	28
425	Mild Hydrosilylation of Amides by Platinum Nâ€Heterocyclic Carbene Catalysts. European Journal of Inorganic Chemistry, 2014, 2014, 2345-2349.	1.0	27
426	Ruthenium atalyzed Alkoxycarbonylation of Alkenes with Paraformaldehyde as a Carbon Monoxide Substitute. ChemCatChem, 2014, 6, 2805-2809.	1.8	27
427	Development of efficient palladium catalysts for alkoxycarbonylation of alkenes. Chemical Communications, 2018, 54, 12238-12241.	2.2	27
428	Cascade Synthesis of Pyrroles from Nitroarenes with Benign Reductants Using a Heterogeneous Cobalt Catalyst. Angewandte Chemie - International Edition, 2020, 59, 18679-18685.	7.2	27
429	A General Regioselective Synthesis of Alcohols by Cobaltâ€Catalyzed Hydrogenation of Epoxides. Angewandte Chemie - International Edition, 2020, 59, 11321-11324.	7.2	27
430	A general platinum-catalyzed alkoxycarbonylation of olefins. Chemical Communications, 2020, 56, 5235-5238.	2.2	27
431	Cobalt-Catalyzed Hydroformylation under Mild Conditions in the Presence of Phosphine Oxides. ACS Sustainable Chemistry and Engineering, 2021, 9, 5148-5154.	3.2	27
432	Homogeneous Carbon Capture and Catalytic Hydrogenation: Toward a Chemical Hydrogen Battery System. Jacs Au, 2022, 2, 1020-1031.	3.6	27

#	Article	IF	CITATIONS
433	Ruthenium-catalyzed alkoxycarbonylation of alkenes using carbon monoxide. Organic Chemistry Frontiers, 2015, 2, 771-774.	2.3	26
434	Selective Palladium atalyzed Aminocarbonylation of Olefins to Branched Amides. Angewandte Chemie, 2016, 128, 13742-13746.	1.6	26
435	Direct and Selective Synthesis of Adipic and Other Dicarboxylic Acids by Palladium atalyzed Carbonylation of Allylic Alcohols. Angewandte Chemie - International Edition, 2020, 59, 20394-20398.	7.2	26
436	A General and Highly Selective Palladium atalyzed Hydroamidation of 1,3â€Diynes. Angewandte Chemie - International Edition, 2021, 60, 371-379.	7.2	26
437	Efficient Palladium atalyzed Carbonylation of 1,3â€Dienes: Selective Synthesis of Adipates and Other Aliphatic Diesters. Angewandte Chemie - International Edition, 2021, 60, 9527-9533.	7.2	26
438	Chemical Equilibria in Formic Acid/Amine O ₂ Cycles under Isochoric Conditions using a Ruthenium(II) 1,2â€Bis(diphenylphosphino)ethane Catalyst. ChemCatChem, 2014, 6, 96-99.	1.8	25
439	Dominoâ€Hydroformylation/Aldol Condensation Catalysis: Highly Selective Synthesis of α,βâ€Unsaturated Aldehydes from Olefins. Chemistry - A European Journal, 2014, 20, 13210-13216.	1.7	25
440	Reduction of Nitroarenes Using CO and H2O in the Presence of a Nanostructured Cobalt Oxide/Nitrogen-Doped Graphene (NGr) Catalyst. Synlett, 2015, 26, 313-317.	1.0	25
441	Palladium-catalysed hydroamidocarbonylation of 1,3-dienes. Chemical Communications, 2016, 52, 7142-7145.	2.2	25
442	The role of allyl ammonium salts in palladium-catalyzed cascade reactions towards the synthesis of spiro-fused heterocycles. Nature Communications, 2020, 11, 5383.	5.8	25
443	A Biomassâ€Derived Nonâ€Noble Cobalt Catalyst for Selective Hydrodehalogenation of Alkyl and (Hetero)Aryl Halides. Angewandte Chemie, 2017, 129, 11394-11399.	1.6	24
444	Highly regioselective osmium-catalyzed hydroformylation. Chemical Communications, 2015, 51, 3080-3082.	2.2	23
445	Transfer-dehydrogenation of secondary alcohols catalyzed by manganese NNN-pincer complexes. Chemical Communications, 2019, 55, 14143-14146.	2.2	23
446	Mechanistic Insights into the Electrochemical Reduction of CO ₂ Catalyzed by Iron Cyclopentadienone Complexes. Organometallics, 2019, 38, 1236-1247.	1.1	23
447	Mechanistic study of palladium-catalyzed telomerization of 1,3-butadiene with methanol. Journal of Molecular Modeling, 2010, 16, 431-436.	0.8	22
448	Synthesis of Stable Phosphomide Ligands and their Use in Ru atalyzed Hydrogenations of Bicarbonate and Related Substrates. ChemSusChem, 2013, 6, 85-91.	3.6	22
449	How Important are Impurities in Catalysis? An Example from Ring-Closing Metathesis. ChemCatChem, 2014, 6, 684-688.	1.8	22
450	Encapsulated Cobalt Oxide on Carbon Nanotube Support as Catalyst for Selective Continuous Hydrogenation of the Showcase Substrate 1â€lodoâ€4â€nitrobenzene. Advanced Synthesis and Catalysis, 2016, 358, 2903-2911.	2.1	22

#	Article	IF	CITATIONS
451	Ironâ€Catalyzed Reaction of Urea with Alcohols and Amines: A Safe Alternative for the Synthesis of Primary Carbamates. ChemSusChem, 2016, 9, 2233-2238.	3.6	22
452	Toward Green Acylation of (Hetero)arenes: Palladium-Catalyzed Carbonylation of Olefins to Ketones. ACS Central Science, 2018, 4, 30-38.	5.3	22
453	Highly Efficient Baseâ€Free Dehydrogenation of Formic Acid at Low Temperature. ChemSusChem, 2018, 11, 3092-3095.	3.6	22
454	Catalytic oxidative dehydrogenation of N-heterocycles with nitrogen/phosphorus co-doped porous carbon materials. Chemical Science, 2022, 13, 6865-6872.	3.7	22
455	Efficient Photocatalytic Water Reduction Using Inâ€Situ Generated Knölker's Iron Complexes. ChemCatChem, 2016, 8, 2340-2344.	1.8	21
456	A room temperature cyanation of (hetero)aromatic chlorides by an air stable nickel(<scp>ii</scp>) XantPhos precatalyst and Zn(CN) ₂ . Organic and Biomolecular Chemistry, 2017, 15, 4291-4294.	1.5	21
457	Palladium-catalyzed aerobic oxidative carbonylation of alkynes with amines: a general access to substituted maleimides. Chemical Communications, 2018, 54, 10710-10713.	2.2	21
458	Cyclometalated Ruthenium Pincer Complexes as Catalysts for the αâ€Alkylation of Ketones with Alcohols. Chemistry - A European Journal, 2020, 26, 6050-6055.	1.7	21
459	Manganese-catalyzed selective C–H activation and deuteration by means of a catalytic transient directing group strategy. Chemical Communications, 2021, 57, 1137-1140.	2.2	21
460	Using Aqueous Ammonia in Hydroaminomethylation Reactions: Rutheniumâ€Catalyzed Synthesis of Tertiary Amines. ChemSusChem, 2014, 7, 3260-3263.	3.6	20
461	Copper-based water reduction catalysts for efficient light-driven hydrogen generation. Journal of Molecular Catalysis A, 2014, 395, 449-456.	4.8	20
462	A Mild and Selective Reduction of Î²â€Łactams: Rhâ€Catalyzed Hydrosilylation towards Important Pharmacological Building Blocks. European Journal of Organic Chemistry, 2015, 2015, 1915-1919.	1.2	20
463	Photocatalytic Acceptorless Alkane Dehydrogenation: Scope, Mechanism, and Conquering Deactivation with Carbon Dioxide. ChemSusChem, 2015, 8, 323-330.	3.6	20
464	Iridium atalyzed Hydrogen Production from Monosaccharides, Disaccharide, Cellulose, and Lignocellulose. ChemSusChem, 2015, 8, 804-808.	3.6	20
465	Heteroleptic copper(I) photosensitizers of dibenzo[b,j]-1,10-phenanthroline derivatives driven hydrogen generation from water reduction. Dyes and Pigments, 2016, 134, 580-585.	2.0	20
466	Molecular Defined Molybdenum–Pincer Complexes and Their Application in Catalytic Hydrogenations. Organometallics, 2018, 37, 4402-4408.	1.1	20
467	Synthesis of Carboxylic Acids by Palladiumâ€Catalyzed Hydroxycarbonylation. Angewandte Chemie, 2019, 131, 14503-14511.	1.6	20
468	Improved Bimetallic Cobalt–Manganese Catalysts for Selective Oxidative Cleavage of Morpholine Derivatives. ACS Catalysis, 2019, 9, 11125-11129.	5.5	20

#	Article	IF	CITATIONS
469	A general and practical Ni-catalyzed C–H perfluoroalkylation of (hetero)arenes. Chemical Communications, 2019, 55, 6723-6726.	2.2	20
470	A Stateâ€ofâ€ŧheâ€Art Heterogeneous Catalyst for Efficient and General Nitrile Hydrogenation. Chemistry - A European Journal, 2020, 26, 15589-15595.	1.7	20
471	Recent Advances in Catalytic Hydrosilylations: Developments beyond Traditional Platinum Catalysts. Angewandte Chemie, 2021, 133, 558-573.	1.6	20
472	A Selective and General Cobalt atalyzed Hydroaminomethylation of Olefins to Amines. Angewandte Chemie - International Edition, 2022, 61, e202112597.	7.2	20
473	Sequential Hydroformylation/Diels–Alder Processes: Oneâ€Pot Synthesis of Polysubstituted Cyclohexenes, Cyclohexadienes, and Phthalates from Alkynes. Chemistry - A European Journal, 2014, 20, 7939-7942.	1.7	19
474	Selective Rhodium atalyzed Reduction of Tertiary Amides in Amino Acid Esters and Peptides. Angewandte Chemie, 2015, 127, 12566-12570.	1.6	19
475	Pdâ€Catalyzed Cyanation of (Hetero)Aryl Halides by Using Biphosphine Ligands. Chemistry - A European Journal, 2018, 24, 67-70.	1.7	19
476	Selective Long-Range Isomerization Carbonylation of a Complex Hyperbranched Polymer Substrate. ACS Catalysis, 2018, 8, 9232-9237.	5.5	19
477	Manganese(<scp>i</scp>) l̂° ² - <i>NN</i> complex-catalyzed formic acid dehydrogenation. Catalysis Science and Technology, 2020, 10, 3931-3937.	2.1	19
478	Cobalt-catalysed CH-alkylation of indoles with alcohols by borrowing hydrogen methodology. Green Chemistry, 2022, 24, 4566-4572.	4.6	19
479	In Situ Generation of ChiralN-Dienyl Lactams in a Multicomponent Reaction: An Efficient and Highly Selective Way to Asymmetric Amidocyclohexenes. Chemistry - an Asian Journal, 2007, 2, 720-733.	1.7	18
480	Thermally activated delayed fluorescence (TADF) dyes as efficient organic photosensitizers for photocatalytic water reduction. Catalysis Communications, 2019, 119, 11-15.	1.6	18
481	Two-photon, visible light water splitting at a molecular ruthenium complex. Energy and Environmental Science, 0, , .	15.6	18
482	Selective Hydrogenation of Alkynes Catalyzed by Trinuclear Rhodium Hydride Complexes of the Type [{(Rh[PP*]H) ₃ (μ ₂ â€H) ₃ (μ ₃ 3â€H)}(BF ₄) _{ ChemCatChem, 2013, 5, 2818-2821.}	2 i∢ \$sub>].	17
483	Design of N-doped graphene-coated cobalt-based nanoparticles supported on ceria. Journal of Materials Chemistry A, 2015, 3, 17728-17737.	5.2	17
484	Reductive N-methylation of amines using dimethyl carbonate and molecular hydrogen: Mechanistic insights through kinetic modelling. Chemical Engineering Journal, 2018, 351, 1129-1136.	6.6	17
485	Katalytische reduktive Nâ€Alkylierungen unter Verwendung von CO ₂ und Carbonsärederivaten: Aktuelle Entwicklungen. Angewandte Chemie, 2019, 131, 12950-12968.	1.6	17
486	Catalytic Formal Hydroamination of Allylic Alcohols Using Manganese PNPâ€Pincer Complexes. Advanced Synthesis and Catalysis, 2021, 363, 4177-4181.	2.1	17

#	Article	IF	CITATIONS
487	A Practical Palladium-Catalyzed Telomerization for the Synthesis of Functionalized Alcohols. Organic Process Research and Development, 2009, 13, 349-353.	1.3	16
488	Benyzl Alcohol Dehydrogenative Coupling Catalyzed by Defined Mn and Re PNP Pincer Complexes – A Computational Mechanistic Study. European Journal of Inorganic Chemistry, 2018, 2018, 4643-4657.	1.0	16
489	Tailored Cobaltâ€Catalysts for Reductive Alkylation of Anilines with Carboxylic Acids under Mild Conditions. Angewandte Chemie, 2018, 130, 11847-11851.	1.6	16
490	Additive-free cobalt-catalysed hydrogenation of carbonates to methanol and alcohols. Catalysis Science and Technology, 2019, 9, 3548-3553.	2.1	16
491	Pd-Catalyzed Carbonylation of Vinyl Triflates To Afford α,β-Unsaturated Aldehydes, Esters, and Amides under Mild Conditions. Organic Letters, 2019, 21, 3528-3532.	2.4	16
492	Synthesis of Molybdenum Pincer Complexes and Their Application in the Catalytic Hydrogenation of Nitriles. ChemCatChem, 2020, 12, 4543-4549.	1.8	16
493	Synthesis of New Diphosphine Ligands and their Application in Pdâ€Catalyzed Alkoxycarbonylation Reactions. Chemistry - an Asian Journal, 2014, 9, 1168-1174.	1.7	15
494	Ruthenium atalyzed Hydroaroylation of Styrenes in Water through Directed CH Bond Activation. ChemCatChem, 2014, 6, 1562-1566.	1.8	15
495	Selective Hydrogenation of Ruthenium Acylphosphine Complexes. Organometallics, 2014, 33, 94-99.	1.1	15
496	Developing Bicatalytic Cascade Reactions: Ruthenium atalyzed Hydrogen Generation From Methanol. Chemistry - A European Journal, 2019, 25, 9345-9349.	1.7	15
497	Palladium atalyzed Methylation of Nitroarenes with Methanol. Angewandte Chemie, 2019, 131, 5471-5475.	1.6	15
498	Ruthenium atalyzed Site‧elective Trifluoromethylations and (Per)Fluoroalkylations of Anilines and Indoles. Chemistry - A European Journal, 2020, 26, 6784-6788.	1.7	15
499	Homogeneous cobalt-catalyzed deoxygenative hydrogenation of amides to amines. Catalysis Science and Technology, 2020, 10, 6116-6128.	2.1	15
500	Tailored Palladium Catalysts for Selective Synthesis of Conjugated Enynes by Monocarbonylation of 1,3â€Diynes. Angewandte Chemie, 2020, 132, 9117-9125.	1.6	15
501	Ambient Hydrogenation and Deuteration of Alkenes Using a Nanostructured Ni ore–Shell Catalyst. Angewandte Chemie, 2021, 133, 18739-18746.	1.6	15
502	Ruthenium atalyzed Deuteration of Aromatic Carbonyl Compounds with a Catalytic Transient Directing Group. Chemistry - A European Journal, 2021, 27, 9768-9773.	1.7	15
503	The novel arylindolylmaleimide PDA-66 displays pronounced antiproliferative effects in acute lymphoblastic leukemia cells. BMC Cancer, 2014, 14, 71.	1.1	14
504	Ruthenium-Catalyzed Hydrogen Generation from Alcohols and Formic Acid, Including Ru-Pincer-Type Complexes. Topics in Organometallic Chemistry, 2014, , 45-79.	0.7	14

#	Article	IF	CITATIONS
505	Practical in situ-generation of phosphinite ligands for palladium-catalyzed carbonylation of (hetero)aryl bromides forming esters. Chemical Communications, 2017, 53, 7469-7472.	2.2	14
506	Iron–PNPâ€Pincerâ€Catalyzed Transfer Dehydrogenation of Secondary Alcohols. ChemSusChem, 2019, 12, 2988-2993.	3.6	14
507	Pdâ€Catalyzed Selective Carbonylation of gem â€Difluoroalkenes: A Practical Synthesis of Difluoromethylated Esters. Angewandte Chemie, 2019, 131, 4738-4742.	1.6	14
508	Convenient synthesis of cobalt nanoparticles for the hydrogenation of quinolines in water. Catalysis Science and Technology, 2020, 10, 4820-4826.	2.1	14
509	A general strategy for the synthesis of α-trifluoromethyl- and α-perfluoroalkyl-β-lactams via palladium-catalyzed carbonylation. Chemical Science, 2021, 12, 10467-10473.	3.7	14
510	Palladium atalyzed Cascade Carbonylation to α,βâ€Unsaturated Piperidones via Selective Cleavage of Carbon–Carbon Triple Bonds. Angewandte Chemie - International Edition, 2021, 60, 22393-22400.	7.2	14
511	Esters, Including Triglycerides, and Hydrogen as Feedstocks for the Rutheniumâ€Catalyzed Direct Nâ€Alkylation of Amines. Angewandte Chemie, 2016, 128, 11215-11219.	1.6	13
512	Markovnikovâ€ 5 elective Palladium Catalyst for Carbonylation of Alkynes with Heteroarenes. Angewandte Chemie, 2017, 129, 12138-12142.	1.6	13
513	Selective palladium-catalysed synthesis of diesters: alkoxycarbonylation of a CO ₂ -butadiene derived δ-lactone. Green Chemistry, 2017, 19, 3542-3548.	4.6	13
514	Stereoselective Synthesis of Highly Substituted Conjugated Dienes via Pd atalyzed Carbonylation of 1,3â€Diynes. Angewandte Chemie, 2019, 131, 10793-10797.	1.6	13
515	Addressing the Reproducibility of Photocatalytic Carbon Dioxide Reduction. ChemCatChem, 2020, 12, 1603-1608.	1.8	13
516	Selective nickel-catalyzed fluoroalkylations of olefins. Chemical Communications, 2020, 56, 15157-15160.	2.2	13
517	Cobalt Singleâ€Atom Catalysts with High Stability for Selective Dehydrogenation of Formic Acid. Angewandte Chemie, 2020, 132, 15983-15988.	1.6	13
518	Ligandâ€Controlled Palladiumâ€Catalyzed Carbonylation of Alkynols: Highly Selective Synthesis of αâ€Methyleneâ€Î²â€Lactones. Angewandte Chemie - International Edition, 2020, 59, 21585-21590.	7.2	13
519	Evaluation of Fe and Ru Pincerâ€Type Complexes as Catalysts for the Racemization of Secondary Benzylic Alcohols. Chemistry - A European Journal, 2016, 22, 11583-11586.	1.7	12
520	Additive-Free Nickel-Catalyzed Debenzylation Reactions via Hydrogenative C–O and C–N Bond Cleavage. ACS Sustainable Chemistry and Engineering, 2019, 7, 17107-17113.	3.2	12
521	Palladium-catalyzed carbonylations of highly substituted olefins using CO-surrogates. Organic Chemistry Frontiers, 2020, 7, 3681-3685.	2.3	12
522	Transferring photocatalytic CO ₂ reduction mediated by Cu(N^N)(P^P) ⁺ complexes from organic solvents into ionic liquid media. Green Chemistry, 2020, 22, 4541-4549.	4.6	12

#	Article	IF	CITATIONS
523	Iron/N-doped graphene nano-structured catalysts for general cyclopropanation of olefins. Chemical Science, 2020, 11, 6217-6221.	3.7	12
524	Interference of a novel indolylmaleimide with microtubules induces mitotic arrest and apoptosis in human progenitor and cancer cells. Biochemical Pharmacology, 2013, 85, 763-771.	2.0	11
525	Hydrogenation of phenyl-substituted Cî€,N, Cî€N,Cî€,C, C and Cî€O functional groups by Cr, Mo and W PNP pincer complexes – a DFT study. Catalysis Science and Technology, 2017, 7, 2298-2307.	2.1	11
526	Funktionalisierung nichtaktivierter C(sp ³)â€Hâ€Bindungen durch Metallcarbenâ€Insertionen. Angewandte Chemie, 2017, 129, 46-48.	1.6	11
527	Diferrate [Fe ₂ (CO) ₆ (μâ€CO){μâ€P(aryl) ₂ }] ^{â^'} as Selfâ€Assembling Iron/Phosphorâ€Based Catalyst for the Hydrogen Evolution Reaction in Photocatalytic Proton Reduction—Spectroscopic Insights. Chemistry - A European Journal, 2018, 24, 16052-16065.	1.7	11
528	Biomolecule-derived supported cobalt nanoparticles for hydrogenation of industrial olefins, natural oils and more in water. Green Chemistry, 2019, 21, 5104-5112.	4.6	11
529	A General Regioselective Synthesis of Alcohols by Cobaltâ€Catalyzed Hydrogenation of Epoxides. Angewandte Chemie, 2020, 132, 11417-11420.	1.6	11
530	Palladium-Catalyzed Domino Aminocarbonylation of Alkynols: Direct and Selective Synthesis of Itaconimides. Jacs Au, 2021, 1, 1257-1265.	3.6	11
531	HCOOH disproportionation to MeOH promoted by molybdenum PNP complexes. Chemical Science, 2021, 12, 13101-13119.	3.7	11
532	Revisiting Reduction of CO ₂ to Oxalate with First-Row Transition Metals: Irreproducibility, Ambiguous Analysis, and Conflicting Reactivity. Jacs Au, 2022, 2, 731-744.	3.6	11
533	Application of Crabtree/Pfaltz-Type Iridium Complexes for the Catalyzed Asymmetric Hydrogenation of an Agrochemical Building Block. Organic Process Research and Development, 2020, 24, 443-447.	1.3	10
534	Towards a practical perfluoroalkylation of (hetero)arenes with perfluoroalkyl bromides using cobalt nanocatalysts. Catalysis Science and Technology, 2020, 10, 1731-1738.	2.1	10
535	Copper-catalysed low-temperature water–gas shift reaction for selective deuteration of aryl halides. Chemical Science, 2021, 12, 14033-14038.	3.7	10
536	Low-Valent Molybdenum PNP Pincer Complexes as Catalysts for the Semihydrogenation of Alkynes. Organometallics, 2022, 41, 1797-1805.	1.1	10
537	Benign Synthesis of Indoles from Anilines and Epoxides: New Application for Ruthenium Pincer Catalysts. Chimia, 2014, 68, 231-234.	0.3	9
538	Effective quenching and excited-state relaxation of a Cu(I) photosensitizer addressed by time-resolved spectroscopy and TDDFT calculations. Chemical Physics, 2018, 515, 557-563.	0.9	9
539	A General, Activatorâ€Free Palladiumâ€Catalyzed Synthesis of Arylacetic and Benzoic Acids from Formic Acid. Angewandte Chemie, 2018, 130, 7026-7030.	1.6	9
540	Oxalate production via oxidation of ascorbate rather than reduction of carbon dioxide. Nature Communications, 2021, 12, 1997.	5.8	9

#	Article	IF	CITATIONS
541	Mechanisms of Co ^{II} and Acid Jointly Catalyzed Domino Conversion of CO ₂ , H ₂ , and CH ₃ OH to Dialkoxymethane: A DFT Study. ACS Catalysis, 2021, 11, 6908-6919.	5.5	9
542	Novel Isoquinolinamine and Isoindoloquinazolinone Compounds Exhibit Antiproliferative Activity in Acute Lymphoblastic Leukemia Cells. Biomolecules and Therapeutics, 2019, 27, 492-501.	1.1	9
543	Iridium atalyzed Domino Hydroformylation/Hydrogenation of Olefins to Alcohols: Synergy of Two Ligands. Chemistry - A European Journal, 2022, 28, .	1.7	9
544	Silicon-Enriched Nickel Nanoparticles for Hydrogenation of N-Heterocycles in Aqueous Media. ACS Applied Nano Materials, 2022, 5, 5625-5630.	2.4	9
545	Manganeseâ€Catalysed Deuterium Labelling of Anilines and Electronâ€Rich (Hetero)Arenes. Angewandte Chemie - International Edition, 2022, 61, .	7.2	9
546	Exploring the activities of vanadium, niobium, and tantalumÂPNP pincer complexes in the hydrogenation of phenyl-substituted CN, CN, CC, CC, and CO functional groups. Comptes Rendus Chimie, 2018, 21, 303-309.	0.2	8
547	Versatile Fluorinated Building Blocks by Stereoselective (Per)fluoroalkenylation of Ketones. European Journal of Organic Chemistry, 2020, 2020, 70-81.	1.2	8
548	Direct and Selective Synthesis of Adipic and Other Dicarboxylic Acids by Palladium atalyzed Carbonylation of Allylic Alcohols. Angewandte Chemie, 2020, 132, 20574-20578.	1.6	8
549	A General Catalyst Based on Cobalt Core–Shell Nanoparticles for the Hydrogenation of Nâ€Heteroarenes Including Pyridines. Angewandte Chemie, 2020, 132, 17561-17565.	1.6	8
550	From Mobile Phones to Catalysts: E-Waste-Derived Heterogeneous Copper Catalysts for Hydrogenation Reactions. ACS Sustainable Chemistry and Engineering, 2021, 9, 10062-10072.	3.2	8
551	Synthesis of <i>N</i> â€Heterocycles via Oxidantâ€Free Dehydrocyclization of Alcohols Using Heterogeneous Catalysts. Angewandte Chemie, 2021, 133, 25392-25406.	1.6	8
552	Characterization of the novel indolylmaleimides' PDA-66 and PDA-377 effect on canine lymphoma cells. Oncotarget, 2016, 7, 35379-35389.	0.8	8
553	A Convenient and Stable Heterogeneous Nickel Catalyst for Hydrodehalogenation of Aryl Halides Using Molecular Hydrogen. ChemSusChem, 2022, 15, .	3.6	8
554	Palladium-Catalyzed Methoxycarbonylation Investigated by Design of Experiments. ACS Sustainable Chemistry and Engineering, 2022, 10, 4822-4830.	3.2	8
555	Hydrogenation of Pyridines Using a Nitrogenâ€Modified Titaniaâ€Supported Cobalt Catalyst. Angewandte Chemie, 2018, 130, 14696-14700.	1.6	7
556	Practical Catalytic Cleavage of C(sp 3)â^'C(sp 3) Bonds in Amines. Angewandte Chemie, 2019, 131, 10803-10807.	1.6	7
557	Formic Acid Dehydrogenation by a Cyclometalated <i>îº³</i> NN Ruthenium Complex. European Journal of Inorganic Chemistry, 2020, 2020, 1293-1299.	1.0	7
558	A General and Highly Selective Palladium atalyzed Hydroamidation of 1,3â€Diynes. Angewandte Chemie, 2021, 133, 375-383.	1.6	7

#	Article	IF	CITATIONS
559	Ruthenium-catalysed hydroxycarbonylation of olefins. Catalysis Science and Technology, 2021, 11, 2026-2030.	2.1	7
560	Palladium atalyzed Cascade Carbonylation to α,βâ€Unsaturated Piperidones via Selective Cleavage of Carbon–Carbon Triple Bonds. Angewandte Chemie, 2021, 133, 22567-22574.	1.6	7
561	Molecular Catalysts for the Reductive Homocoupling of CO ₂ towards C ₂₊ Compounds. Angewandte Chemie, 2022, 134, .	1.6	7
562	Palladium atalyzed Carbonylation of <i>sec</i> ―and <i>tert</i> â€Alcohols. Angewandte Chemie, 2017, 129, 6299-6303.	1.6	6
563	An Efficient Protocol to Synthesize Nâ€Acylâ€enamides and â€Imines by Pdâ€Catalyzed Carbonylations. Chemistry - A European Journal, 2018, 24, 2164-2172.	1.7	6
564	Heterogeneous Iron-Catalyzed Hydrogenation of Nitroarenes under Water-Gas Shift Reaction Conditions. Synthesis, 2018, 50, 4369-4376.	1.2	6
565	Pd-catalyzed synthesis of α,Ĵ²-unsaturated ketones by carbonylation of vinyl triflates and nonaflates. Chemical Communications, 2019, 55, 5938-5941.	2.2	6
566	Cascade Synthesis of Pyrroles from Nitroarenes with Benign Reductants Using a Heterogeneous Cobalt Catalyst. Angewandte Chemie, 2020, 132, 18838-18844.	1.6	6
567	Selective Acceptorless Dehydrogenation of Primary Amines to Imines by Core–Shell Cobalt Nanoparticles. Angewandte Chemie, 2020, 132, 7571-7577.	1.6	6
568	Iron atalyzed Epoxidation of Linear αâ€Olefins with Hydrogen Peroxide. ChemCatChem, 2022, 14, .	1.8	6
569	A general synthesis of aromatic amides <i>via</i> palladium-catalyzed direct aminocarbonylation of aryl chlorides. Organic Chemistry Frontiers, 2022, 9, 2491-2497.	2.3	6
570	Diastereoselective hydrogenation of arenes and pyridines using supported ruthenium nanoparticles under mild conditions. Chemical Communications, 2022, 58, 8842-8845.	2.2	6
571	Synthetic approaches to artificial photosynthesis: general discussion. Faraday Discussions, 2019, 215, 242-281.	1.6	5
572	A direct synthesis of carboxylic acids <i>via</i> platinum-catalysed hydroxycarbonylation of olefins. Catalysis Science and Technology, 2021, 11, 2703-2707.	2.1	5
573	Siteâ€5elective Realâ€Time Observation of Bimolecular Electron Transfer in a Photocatalytic System Using Lâ€Edge Xâ€Ray Absorption Spectroscopy**. ChemPhysChem, 2021, 22, 693-700.	1.0	5
574	(<i>In situ</i>) spectroscopic studies on state-of-the-art Pd(<scp>ii</scp>) catalysts in solution for the alkoxycarbonylation of alkenes. Catalysis Science and Technology, 2022, 12, 3175-3189.	2.1	5
575	Development of a Palladiumâ€Catalyzed Process for the Synthesis of <i>Z</i> â€Alkenes by Sequential Sonogashira–Hydrogenation Reaction. European Journal of Organic Chemistry, 2018, 2018, 5253-5259.	1.2	4
576	Spiers Memorial Lecture : Artificial photosynthesis: An introduction. Faraday Discussions, 2019, 215, 9-14.	1.6	4

#	Article	IF	CITATIONS
577	Isoquinolinamine FX-9 Exhibits Anti-Mitotic Activity in Human and Canine Prostate Carcinoma Cell Lines. International Journal of Molecular Sciences, 2019, 20, 5567.	1.8	4
578	Dye activation of heterogeneous Copper(II)-Species for visible light driven hydrogen generation. International Journal of Hydrogen Energy, 2019, 44, 28409-28420.	3.8	4
579	Efficient Palladium-Catalyzed Synthesis of 2-Aryl Propionic Acids. Molecules, 2020, 25, 3421.	1.7	4
580	Facile Synthesis of Iron-Titanate Nanocomposite as a Sustainable Material for Selective Amination of Substitued Nitro-Arenes. Catalysts, 2020, 10, 871.	1.6	4
581	Ligandâ€Controlled Palladiumâ€Catalyzed Carbonylation of Alkynols: Highly Selective Synthesis of αâ€Methyleneâ€Î²â€Lactones. Angewandte Chemie, 2020, 132, 21769-21774.	1.6	4
582	Efficient Palladiumâ€Catalyzed Carbonylation of 1,3â€Dienes: Selective Synthesis of Adipates and Other Aliphatic Diesters. Angewandte Chemie, 2021, 133, 9613-9619.	1.6	4
583	Highly Scalable Conversion of Blood Protoporphyrin to Efficient Electrocatalyst for CO 2 â€ŧo O Conversion. Advanced Materials Interfaces, 2021, 8, 2100067.	1.9	4
584	Aerobic iron-catalyzed site-selective C(sp3)–C(sp3) bond cleavage in N-heterocycles. Catalysis Communications, 2021, 157, 106333.	1.6	4
585	Ruthenium-catalysed domino hydroformylation–hydrogenation–esterification of olefins. Catalysis Science and Technology, 2021, 11, 5777-5780.	2.1	4
586	A Selective and General Cobalt atalyzed Hydroaminomethylation of Olefins to Amines. Angewandte Chemie, 2022, 134, .	1.6	4
587	Baseâ€Mediated Remote Deuteration of <i>N</i> â€Heteroarenes – Broad Scope and Mechanism. European Journal of Organic Chemistry, 0, , .	1.2	4
588	Palladium atalyzed Alkoxycarbonylation of sec â€Benzylic Ethers. European Journal of Organic Chemistry, 2020, 2020, 932-936.	1.2	3
589	Synthesis of <i>N</i> -Lauroyl Sarcosine by Amidocarbonylation: Comparing Homogeneous and Heterogeneous Palladium Catalysts. Organic Process Research and Development, 2017, 21, 2045-2051.	1.3	2
590	Preface to Special Issue of ChemSusChem : Sustainable Organic Synthesis. ChemSusChem, 2019, 12, 2834-2834.	3.6	2
591	Demonstrator devices for artificial photosynthesis: general discussion. Faraday Discussions, 2019, 215, 345-363.	1.6	2
592	Metal-Catalysed Hydrogenation of CO2 into Methanol. Topics in Organometallic Chemistry, 2018, , 1-16.	0.7	1
593	Introduction to hybrid catalysis. Organic and Biomolecular Chemistry, 2021, 19, 702-704.	1.5	1
594	Ruthenium atalyzed Deuteration of Aromatic Carbonyl Compounds with a Catalytic Transient Directing Group. Chemistry - A European Journal, 2021, 27, 9720-9720.	1.7	1

#	Article	IF	CITATIONS
595	Frontispiece: Ambient Hydrogenation and Deuteration of Alkenes Using a Nanostructured Ni ore–Shell Catalyst. Angewandte Chemie - International Edition, 2021, 60, .	7.2	1
596	Addressing the Reproducibility of Photocatalytic Carbon Dioxide Reduction. ChemCatChem, 2020, 12, 1528-1528.	1.8	1
597	Cobaltâ€Catalysed Reductive Etherification Using Phosphine Oxide Promoters under Hydroformylation Conditions. Chemistry - A European Journal, 2022, 28, .	1.7	1
598	A Simple LC-MS/MS Method for the Quantification of PDA-66 in Human Plasma. Molecules, 2022, 27, 974.	1.7	1
599	A Convenient and Stable Heterogeneous Nickel Catalyst for Hydrodehalogenation of Aryl Halides Using Molecular Hydrogen. ChemSusChem, 2022, , e202200248.	3.6	1
600	Innentitelbild: Hydrogenation of Esters to Alcohols Catalyzed by Defined Manganese Pincer Complexes (Angew. Chem. 49/2016). Angewandte Chemie, 2016, 128, 15408-15408.	1.6	0
601	Innentitelbild: Efficient Palladiumâ€Catalyzed Alkoxycarbonylation of Bulk Industrial Olefins Using Ferrocenyl Phosphine Ligands (Angew. Chem. 19/2017). Angewandte Chemie, 2017, 129, 5216-5216.	1.6	0
602	Innenrücktitelbild: Nonâ€₽incerâ€Type Manganese Complexes as Efficient Catalysts for the Hydrogenation of Esters (Angew. Chem. 26/2017). Angewandte Chemie, 2017, 129, 7787-7787.	1.6	0
603	Front Cover: Homogeneous Catalysis by Manganese-Based Pincer Complexes (Eur. J. Org. Chem. 30/2017). European Journal of Organic Chemistry, 2017, 2017, 4343-4343.	1.2	Ο
604	Frontispiece: Developing Bicatalytic Cascade Reactions: Ruthenium atalyzed Hydrogen Generation From Methanol. Chemistry - A European Journal, 2019, 25, .	1.7	0
605	Iron–PNPâ€Pincerâ€Catalyzed Transfer Dehydrogenation of Secondary Alcohols. ChemSusChem, 2019, 12, 2833-2833.	3.6	0
606	Beyond artificial photosynthesis: general discussion. Faraday Discussions, 2019, 215, 422-438.	1.6	0
607	Biological approaches to artificial photosynthesis: general discussion. Faraday Discussions, 2019, 215, 66-83.	1.6	0
608	Innentitelbild: Stereoselective Synthesis of Highly Substituted Conjugated Dienes via Pdâ€Catalyzed Carbonylation of 1,3â€Diynes (Angew. Chem. 31/2019). Angewandte Chemie, 2019, 131, 10486-10486.	1.6	0
609	Light-driven proton reduction with in situ supported copper nanoparticles. International Journal of Hydrogen Energy, 2019, 44, 31892-31901.	3.8	Ο
610	Evaluation of combination protocols of the chemotherapeutic agent FX-9 with azacitidine, dichloroacetic acid, doxorubicin or carboplatin on prostate carcinoma cell lines. PLoS ONE, 2021, 16, e0256468.	1.1	0
611	Frontispiz: Ambient Hydrogenation and Deuteration of Alkenes Using a Nanostructured Ni ore–Shell Catalyst. Angewandte Chemie, 2021, 133, .	1.6	0
612	Novel chemotherapeutic agent FX-9 activates NF-κB signaling and induces G1 phase arrest by activating CDKN1A in a human prostate cancer cell line. BMC Cancer, 2021, 21, 1088.	1.1	0

#	Article	IF	CITATIONS
613	{Bis[2-(diisopropylphosphanyl)ethyl]amine}carbonyl(tetrahydroborato)cobalt(I). IUCrData, 2018, 3, .	0.1	0
614	Tetracarbonyl[4,4-dimethyl-2-(pyridin-2-yl)-2-oxazoline-ΰ ² <i>N</i> , <i>N</i> ′]molybdenum(0). IUCrData, 2019, 4, .	0.1	0
615	Bis(benzo[<i>h</i>]quinolin-10-olato-κ ² <i>N</i> , <i>O</i>)bromidomanganese(III). IUCrData, 2020, 5, .	0.1	0
616	Manganese atalysed Deuterium Labelling of Anilines and Electronâ€Rich (Hetero)Arenes. Angewandte Chemie, 0, , .	1.6	0