Robert N Pike

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3392988/publications.pdf Version: 2024-02-01

POREDT N DIKE

#	Article	IF	CITATIONS
1	A molecular basis for the association of the <i>HLA-DRB1</i> locus, citrullination, and rheumatoid arthritis. Journal of Experimental Medicine, 2013, 210, 2569-2582.	4.2	354
2	PROSPER: An Integrated Feature-Based Tool for Predicting Protease Substrate Cleavage Sites. PLoS ONE, 2012, 7, e50300.	1.1	265
3	A Common Fold Mediates Vertebrate Defense and Bacterial Attack. Science, 2007, 317, 1548-1551.	6.0	261
4	Corruption of Innate Immunity by Bacterial Proteases. Journal of Innate Immunity, 2009, 1, 70-87.	1.8	238
5	Arginine-Specific Protease fromPorphyromonas gingivalis Activates Protease-Activated Receptors on Human Oral Epithelial Cells and Induces Interleukin-6 Secretion. Infection and Immunity, 2001, 69, 5121-5130.	1.0	227
6	Activation of protease-activated receptors by gingipains fromPorphyromonas gingivalis leads to platelet aggregation: a new trait in microbial pathogenicity. Blood, 2001, 97, 3790-3797.	0.6	208
7	Molecular Cloning and Structural Characterization of the Arg-gingipain Proteinase of Porphyromonas gingivalis. Journal of Biological Chemistry, 1995, 270, 1007-1010.	1.6	191
8	GABA production by glutamic acid decarboxylase is regulated by a dynamic catalytic loop. Nature Structural and Molecular Biology, 2007, 14, 280-286.	3.6	189
9	The X-ray Crystal Structure of Full-Length Human Plasminogen. Cell Reports, 2012, 1, 185-190.	2.9	189
10	Titration and Mapping of the Active Site of Cysteine Proteinases from Porphyromonas gingivalis (Gingipains) Using Peptidyl Chloromethanes. Biological Chemistry, 1997, 378, 223-30.	1.2	157
11	Cleavage and activation of proteinaseâ€activated receptorâ€2 on human neutrophils by gingipainâ€R from <i>Porphyromonas gingivalis</i> . FEBS Letters, 1998, 435, 45-48.	1.3	150
12	Phylogeny of the Serpin Superfamily: Implications of Patterns of Amino Acid Conservation for Structure and Function. Genome Research, 2000, 10, 1845-1864.	2.4	145
13	PROSPERous: high-throughput prediction of substrate cleavage sites for 90 proteases with improved accuracy. Bioinformatics, 2018, 34, 684-687.	1.8	131
14	Antithrombin: in control of coagulation. International Journal of Biochemistry and Cell Biology, 2004, 36, 386-389.	1.2	128
15	Molecular Cloning and Characterization of Porphyromonas gingivalis Lysine-specific Gingipain. Journal of Biological Chemistry, 1997, 272, 1595-1600.	1.6	124
16	Control of the coagulation system by serpins. FEBS Journal, 2005, 272, 4842-4851.	2.2	117
17	Serpins in Prokaryotes. Molecular Biology and Evolution, 2002, 19, 1881-1890.	3.5	112
18	The Evolution of Enzyme Specificity in Fasciola spp Journal of Molecular Evolution, 2003, 57, 1-15.	0.8	106

#	Article	IF	CITATIONS
19	An Immune Response Directed to Proteinase and Adhesin Functional Epitopes Protects againstPorphyromonas gingivalis-Induced Periodontal Bone Loss. Journal of Immunology, 2005, 175, 3980-3989.	0.4	99
20	The Murine Orthologue of Human Antichymotrypsin. Journal of Biological Chemistry, 2005, 280, 43168-43178.	1.6	97
21	Osteopontin and skeletal muscle myoblasts: Association with muscle regeneration and regulation of myoblast function in vitro. International Journal of Biochemistry and Cell Biology, 2008, 40, 2303-2314.	1.2	97
22	Conformational changes in serpins: II. the mechanism of activation of antithrombin by heparin. Journal of Molecular Biology, 2000, 301, 1287-1305.	2.0	93
23	POPS: A COMPUTATIONAL TOOL FOR MODELING AND PREDICTING PROTEASE SPECIFICITY. Journal of Bioinformatics and Computational Biology, 2005, 03, 551-585.	0.3	89
24	Scabies Mite Inactivated Serine Protease Paralogs Inhibit the Human Complement System. Journal of Immunology, 2009, 182, 7809-7817.	0.4	89
25	Cloning and Expression of the Major SecretedCathepsin B-Like Protein from Juvenile Fasciola hepatica andAnalysis of Immunogenicity following Liver FlukeInfection. Infection and Immunity, 2003, 71, 6921-6932.	1.0	88
26	The gingipains: scissors and glue of the periodontal pathogen, <i>Porphyromonas gingivalis</i> . Future Microbiology, 2009, 4, 471-487.	1.0	85
27	Proteases from Trypanosoma brucei brucei. Purification, Characterisation and Interactions with Host Regulatory Molecules. FEBS Journal, 1996, 238, 728-736.	0.2	81
28	Enzymic, Phylogenetic, and Structural Characterization of the Unusual Papain-like Protease Domain of Plasmodium falciparum SERA5. Journal of Biological Chemistry, 2003, 278, 48169-48177.	1.6	81
29	The Subtilisin-Like Protease AprV2 Is Required for Virulence and Uses a Novel Disulphide-Tethered Exosite to Bind Substrates. PLoS Pathogens, 2010, 6, e1001210.	2.1	81
30	Mannose-binding lectin serine proteases and associated proteins of the lectin pathway of complement: Two genes, five proteins and many functions?. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2012, 1824, 253-262.	1.1	80
31	Inhibitory Activity of a Heterochromatin-associated Serpin (MENT) against Papain-like Cysteine Proteinases Affects Chromatin Structure and Blocks Cell Proliferation. Journal of Biological Chemistry, 2002, 277, 13192-13201.	1.6	77
32	Cleaved antitrypsin polymers at atomic resolution. Protein Science, 2000, 9, 417-420.	3.1	73
33	Purification and Characterization of a Novel Endopeptidase in Ragweed (Ambrosia artemisiifolia) Pollen. Journal of Biological Chemistry, 1996, 271, 26227-26232.	1.6	72
34	Hurpin Is a Selective Inhibitor of Lysosomal Cathepsin L and Protects Keratinocytes from Ultraviolet-Induced Apoptosis. Biochemistry, 2003, 42, 7381-7389.	1.2	72
35	Evidence That Serpin Architecture Intrinsically Supports Papain-like Cysteine Protease Inhibition: Engineering α1-Antitrypsin To Inhibit Cathepsin Proteases. Biochemistry, 2002, 41, 4998-5004.	1.2	71
36	Twenty years of bioinformatics research for protease-specific substrate and cleavage site prediction: a comprehensive revisit and benchmarking of existing methods. Briefings in Bioinformatics, 2019, 20, 2150-2166.	3.2	70

#	Article	IF	CITATIONS
37	Inhibition of osteoblast apoptosis by thrombin. Bone, 2003, 33, 733-743.	1.4	69
38	Subsite cooperativity in protease specificity. Biological Chemistry, 2009, 390, 401-407.	1.2	65
39	Elucidation of the substrate specificity of the MASP-2 protease of the lectin complement pathway and identification of the enzyme as a major physiological target of the serpin, C1-inhibitor. Molecular Immunology, 2008, 45, 670-677.	1.0	64
40	A trypanosome oligopeptidase as a target for the trypanocidal agents pentamidine, diminazene and suramin. FEBS Letters, 1998, 433, 251-256.	1.3	63
41	Novel Scabies Mite Serpins Inhibit the Three Pathways of the Human Complement System. PLoS ONE, 2012, 7, e40489.	1.1	62
42	Cysteine Proteinase Inhibitors Kill Cultured Bloodstream Forms ofTrypanosoma brucei brucei. Experimental Parasitology, 1999, 91, 349-355.	0.5	59
43	For the record: A single amino acid substitution affects substrate specificity in cysteine proteinases from Fasciola hepatica. Protein Science, 2000, 9, 2567-2572.	3.1	59
44	A naturally occurring NAR variable domain binds the Kgp protease fromPorphyromonas gingivalis. FEBS Letters, 2002, 516, 80-86.	1.3	59
45	Cathepsin B proteases of flukes: the key to facilitating parasite control?. Trends in Parasitology, 2010, 26, 506-514.	1.5	59
46	Assembly of the Type II Secretion System such as Found in Vibrio cholerae Depends on the Novel Pilotin AspS. PLoS Pathogens, 2013, 9, e1003117.	2.1	59
47	Polyphosphate is a novel cofactor for regulation of complement by a serpin, C1 inhibitor. Blood, 2016, 128, 1766-1776.	0.6	59
48	Mature Cathepsin L Is Substantially Active in the Ionic Milieu of the Extracellular Medium. Archives of Biochemistry and Biophysics, 1995, 324, 93-98.	1.4	56
49	Scabies Mite Inactive Serine Proteases Are Potent Inhibitors of the Human Complement Lectin Pathway. PLoS Neglected Tropical Diseases, 2014, 8, e2872.	1.3	50
50	Heparin-dependent Modification of the Reactive Center Arginine of Antithrombin and Consequent Increase in Heparin Binding Affinity. Journal of Biological Chemistry, 1997, 272, 19652-19655.	1.6	48
51	The Role of Protease-Activated Receptor-1 in Bone Healing. American Journal of Pathology, 2005, 166, 857-868.	1.9	48
52	Evidence for the activation of PAR-2 by the sperm protease, acrosin: expression of the receptor on oocytes. FEBS Letters, 2000, 484, 285-290.	1.3	46
53	Characterization of a Serine Protease Homologous to House Dust Mite Group 3 Allergens from the Scabies Mite Sarcoptes scabiei. Journal of Biological Chemistry, 2009, 284, 34413-34422.	1.6	46
54	The 1.5 Ã Crystal Structure of a Prokaryote Serpin. Structure, 2003, 11, 387-397.	1.6	44

#	Article	IF	CITATIONS
55	Vector-based RNA interference of cathepsin B1 in Schistosoma mansoni. Cellular and Molecular Life Sciences, 2010, 67, 3739-3748.	2.4	43
56	X-ray crystal structure of MENT: evidence for functional loop–sheet polymers in chromatin condensation. EMBO Journal, 2006, 25, 3144-3155.	3.5	41
57	The protease cathepsin L regulates Th17 cell differentiation. Journal of Autoimmunity, 2015, 65, 56-63.	3.0	41
58	DNA Accelerates the Inhibition of Human Cathepsin V by Serpins. Journal of Biological Chemistry, 2007, 282, 36980-36986.	1.6	40
59	Activation of Protease-Activated Receptor-2 Leads to Inhibition of Osteoclast Differentiation. Journal of Bone and Mineral Research, 2003, 19, 507-516.	3.1	39
60	A major cathepsin B protease from the liver fluke Fasciola hepatica has atypical active site features and a potential role in the digestive tract of newly excysted juvenile parasites. International Journal of Biochemistry and Cell Biology, 2009, 41, 1601-1612.	1.2	39
61	Thrombin-stimulated growth factor and cytokine expression in osteoblasts is mediated by protease-activated receptor-1 and prostanoids. Bone, 2009, 44, 813-821.	1.4	39
62	Serpins: Finely Balanced Conformational Traps. IUBMB Life, 2002, 54, 1-7.	1.5	38
63	Total Synthesis of Homogeneous Variants of Hirudin P6: A Postâ€Translationally Modified Antiâ€Thrombotic Leechâ€Derived Protein. Angewandte Chemie - International Edition, 2014, 53, 3947-3951.	7.2	38
64	Angiotensinogen cleavage by renin: importance of a structurally constrained N-terminus. FEBS Letters, 1998, 436, 267-270.	1.3	36
65	Elucidation of the Substrate Specificity of the C1s Protease of the Classical Complement Pathway. Journal of Biological Chemistry, 2005, 280, 39510-39514.	1.6	36
66	Proteolytically active complexes of cathepsin L and a cysteine proteinase inhibitor; purification and demonstration of their formation in vitro. Archives of Biochemistry and Biophysics, 1992, 294, 623-629.	1.4	35
67	Production and processing of a recombinant Fasciola hepatica cathepsin B-like enzyme (FhcatB1) reveals potential processing mechanisms in the parasite. Biological Chemistry, 2006, 387, 1053-1061.	1.2	34
68	Structural Mechanisms of Inactivation in Scabies Mite Serine Protease Paralogues. Journal of Molecular Biology, 2009, 390, 635-645.	2.0	33
69	The initiating proteases of the complement system: Controlling the cleavage. Biochimie, 2008, 90, 387-395.	1.3	32
70	Adult and juvenile Fasciola cathepsin L proteases: Different enzymes for different roles. Biochimie, 2011, 93, 604-611.	1.3	31
71	BIOINFORMATIC APPROACHES FOR PREDICTING SUBSTRATES OF PROTEASES. Journal of Bioinformatics and Computational Biology, 2011, 09, 149-178.	0.3	31
72	Host andPorphyromonas gingivalis proteinases in periodontitis: A biochemical model of infection and tissue destruction. Journal of Computer - Aided Molecular Design, 1995, 2, 445-458.	1.0	30

#	Article	IF	CITATIONS
73	Characterization of the Specificity of Arginine-Specific Gingipains fromPorphyromonas gingivalisReveals Active Site Differences between Different Forms of the Enzymesâ€. Biochemistry, 2003, 42, 11693-11700.	1.2	29
74	Physical characterization of serpin conformations. Methods, 2004, 32, 150-158.	1.9	29
75	A Molecular Switch Governs the Interaction between the Human Complement Protease C1s and Its Substrate, Complement C4. Journal of Biological Chemistry, 2013, 288, 15821-15829.	1.6	29
76	The C-terminal domains of the gingipain K polyprotein are necessary for assembly of the active enzyme and expression of associated activities. Molecular Microbiology, 2004, 54, 1393-1408.	1.2	28
77	Protease-Activated Receptor 2 Has Pivotal Roles in Cellular Mechanisms Involved in Experimental Periodontitis. Infection and Immunity, 2010, 78, 629-638.	1.0	28
78	Identification of a Catalytic Exosite for Complement Component C4 on the Serine Protease Domain of C1s. Journal of Immunology, 2012, 189, 2365-2373.	0.4	28
79	Isolation of cathepsin D using three-phase partitioning in t-butanol/water/ammonium sulfate. Analytical Biochemistry, 1989, 180, 169-171.	1.1	26
80	Recruitment of Human C1 Esterase Inhibitor Controls Complement Activation on Blood Stage <i>Plasmodium falciparum</i> Merozoites. Journal of Immunology, 2017, 198, 4728-4737.	0.4	26
81	The Lysine-Specific Gingipain of Porphyromonas gingivalis. Advances in Experimental Medicine and Biology, 2011, 712, 15-29.	0.8	26
82	Evolution of Serpin Specificity: Cooperative Interactions in the Reactive-Site Loop Sequence of Antithrombin Specifically Restrict the Inhibition of Activated Protein C. Journal of Molecular Evolution, 2000, 51, 507-515.	0.8	25
83	High Molecular Weight Gingipains from <i>Porphyromonas gingivalis</i> Induce Cytokine Responses from Human Macrophage-Like Cells via a Nonproteolytic Mechanism. Journal of Innate Immunity, 2009, 1, 109-117.	1.8	25
84	Effect of O-glycosylation and tyrosinesulfation of leech-derived peptides on binding and inhibitory activity against thrombin. Chemical Communications, 2012, 48, 1547-1549.	2.2	24
85	Molecular Determinants of the Mechanism Underlying Acceleration of the Interaction between Antithrombin and Factor Xa by Heparin Pentasaccharide. Journal of Biological Chemistry, 2002, 277, 15971-15978.	1.6	23
86	The X-ray Crystal Structure of Mannose-binding Lectin-associated Serine Proteinase-3 Reveals the Structural Basis for Enzyme Inactivity Associated with the Carnevale, Mingarelli, Malpuech, and Michels (3MC) Syndrome. Journal of Biological Chemistry, 2013, 288, 22399-22407.	1.6	23
87	Multiple domains of MASP-2, an initiating complement protease, are required for interaction with its substrate C4. Molecular Immunology, 2012, 49, 593-600.	1.0	22
88	A High Yield Method for the Isolation of Sheep's Liver Cathepsin L. Preparative Biochemistry and Biotechnology, 1989, 19, 231-245.	0.4	20
89	Serpins and the Complement System. Methods in Enzymology, 2011, 499, 55-75.	0.4	20

#	Article	IF	CITATIONS
91	Functional responses of bone cells to thrombin. Biological Chemistry, 2006, 387, 1037-1041.	1.2	19
92	Serpins in theCaenorhabditis elegans genome. , 1999, 36, 31-41.		18
93	Fasciola hepatica and Fasciola gigantica: Cloning and characterisation of 70kDa heat-shock proteins reveals variation in HSP70 gene expression between parasite species recovered from sheep. Experimental Parasitology, 2008, 118, 536-542.	0.5	18
94	Structural basis for substrate specificity of Helicobacter pylori M17 aminopeptidase. Biochimie, 2016, 121, 60-71.	1.3	18
95	Molecular basis for the folding of \hat{l}^2 -helical autotransporter passenger domains. Nature Communications, 2018, 9, 1395.	5.8	18
96	Determination of the P1′, P2′ and P3′ subsite-specificity of factor Xa. International Journal of Biochemistry and Cell Biology, 2003, 35, 221-225.	1.2	17
97	S1 Pocket of a Bacterially Derived Subtilisin-like Protease Underpins Effective Tissue Destruction. Journal of Biological Chemistry, 2011, 286, 42180-42187.	1.6	17
98	Modulation of the proteolytic activity of the complement protease C1s by polyanions: implications for polyanion-mediated acceleration of interaction between C1s and SERPING1. Biochemical Journal, 2009, 422, 295-303.	1.7	16
99	Methods to Measure the Kinetics of Protease Inhibition by Serpins. Methods in Enzymology, 2011, 501, 223-235.	0.4	16
100	Analysis of Fasciola cathepsin L5 by S2 subsite substitutions and determination of the P1–P4 specificity reveals an unusual preference. Biochimie, 2012, 94, 1119-1127.	1.3	16
101	Structural characterization of the mechanism through which human glutamic acid decarboxylase auto-activates. Bioscience Reports, 2013, 33, 137-44.	1.1	16
102	Molecular Determinants of the Substrate Specificity of the Complement-initiating Protease, C1r. Journal of Biological Chemistry, 2013, 288, 15571-15580.	1.6	16
103	The Elusive Role of the Potential Factor X Cation-binding Exosite-1 in Substrate and Inhibitor Interactions. Journal of Biological Chemistry, 2004, 279, 3671-3679.	1.6	15
104	Proteinaseâ€activated receptorâ€2 (PAR ₂) and mouse osteoblasts: Regulation of cell function and lack of specificity of PAR ₂ â€activating peptides. Clinical and Experimental Pharmacology and Physiology, 2010, 37, 328-336.	0.9	15
105	Protease-associated import systems are widespread in Gram-negative bacteria. PLoS Genetics, 2019, 15, e1008435.	1.5	15
106	Characterisation of the Activity and Stability of Single-chain Cathepsin L and of Proteolytically Active Cathepsin L/Cystatin Complexes. Biological Chemistry Hoppe-Seyler, 1992, 373, 419-426.	1.4	14
107	The Structural Basis for Complement Inhibition by Gigastasin, a Protease Inhibitor from the Giant Amazon Leech. Journal of Immunology, 2017, 199, 3883-3891.	0.4	14
108	Molecular characterization of centerin, a germinal centre cell serpin. Biochemical Journal, 2007, 405, 489-494.	1.7	13

#	Article	IF	CITATIONS
109	Importance of the Prime Subsites of the C1s Protease of the Classical Complement Pathway for Recognition of Substrates. Biochemistry, 2003, 42, 14939-14945.	1.2	11
110	Approaches to Selective Peptidic Inhibitors of Factor Xa. Chemical Biology and Drug Design, 2006, 68, 11-19.	1.5	11
111	Production of anti-peptide antibodies against trypanopain-Tb from Trypanosoma brucei brucei: effects of antibodies on enzyme activity against Z-Phe-Arg-AMC. Immunopharmacology, 1997, 36, 295-303.	2.0	10
112	Fluorinated β²- and β³-Amino Acids: Synthesis and Inhibition of α-Chymotrypsin. Synthesis, 2010, 2010, 1845-1859.	1.2	10
113	Investigation of the mechanism of interaction between Mannose-binding lectin-associated serine protease-2 and complement C4. Molecular Immunology, 2015, 67, 287-293.	1.0	10
114	Anti-peptide antibodies to cathepsins B, L and D and type IV collagenase. Journal of Immunological Methods, 1991, 136, 199-210.	0.6	8
115	Localization of an Immunoinhibitory Epitope of the Cysteine Proteinase, Cathepsin L. Immunological Investigations, 1992, 21, 495-506.	1.0	8
116	The N-terminal segment of antithrombin acts as a steric gate for the binding of heparin. Protein Science, 1998, 7, 782-788.	3.1	8
117	The role of strand 1 of the C Î ² -sheet in the structure and function of α1-antitrypsin. Protein Science, 2009, 10, 2518-2524.	3.1	8
118	The molecular switches controlling the interaction between complement proteases of the classical and lectin pathways and their substrates. Current Opinion in Structural Biology, 2013, 23, 820-827.	2.6	8
119	Keratinocyte-specific ablation of protease-activated receptor 2 prevents gingival inflammation and bone loss in a mouse model of periodontal disease. Cellular Microbiology, 2018, 20, e12891.	1.1	8
120	Determination of the crystal structure and substrate specificity of ananain. Biochimie, 2019, 166, 194-202.	1.3	8
121	Predicting Serpin/Protease Interactions. Methods in Enzymology, 2011, 501, 237-273.	0.4	7
122	Baboon (Papio ursinus) cathepsin L: purification, characterization and comparison with human and sheep cathepsin L. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 1995, 112, 429-439.	0.7	6
123	The amino acid sequences, structure comparisons and inhibition kinetics of sheep cathepsin L and sheep stefin B. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 1996, 114, 193-198.	0.7	6
124	Introduction of a Mutation in the Shutter Region of Antithrombin (Phe77 → Leu) Increases Affinity for Heparin and Decreases Thermal Stabilityâ€. Biochemistry, 2003, 42, 10169-10173.	1.2	6
125	Protein unfolding is essential for cleavage within the α-helix of a model protein substrate by the serine protease, thrombin. Biochimie, 2016, 122, 227-234.	1.3	6
126	Cooperative effects in the substrate specificity of the complement protease C1s. Biological Chemistry, 2009, 390, 503-7.	1.2	5

#	Article	lF	CITATIONS
127	Synthesis of "Difficult―Fluorescence Quenched Substrates of Granzyme C. International Journal of Peptide Research and Therapeutics, 2010, 16, 159-165.	0.9	5
128	Gingipain K. , 2013, , 2337-2344.		4
129	Discovery of Amino Acid Motifs for Thrombin Cleavage and Validation Using a Model Substrate. Biochemistry, 2011, 50, 10499-10507.	1.2	3
130	A T cell-specific knockout reveals an important role for protease-activated receptor 2 in lymphocyte development. International Journal of Biochemistry and Cell Biology, 2017, 92, 95-103.	1.2	3
131	Mapping the binding site of C1-inhibitor for polyanion cofactors. Molecular Immunology, 2020, 126, 8-13.	1.0	3
132	Conformational Change in the Chromatin Remodelling Protein MENT. PLoS ONE, 2009, 4, e4727.	1.1	3
133	A Peptide Antibody that Specifically Inhibits Cathepsin L. Advances in Experimental Medicine and Biology, 1991, 303, 285-288.	0.8	2
134	4th General Meeting of the International Proteolysis Society/International Conference on Protease Inhibitors. Biological Chemistry, 2006, 387, .	1.2	0
135	Highlight: The Biology of Proteolytic Systems. Biological Chemistry, 2010, 391, 837.	1.2	0
136	The x-ray crystal structure of mannose-binding lectin-associated serine proteinase-3 reveals the structural basis for enzyme inactivity associated with the Carnevale, Mingarelli, Malpuech, and Michels (3MC) syndrome Journal of Biological Chemistry, 2013, 288, 28307.	1.6	0
137	Protease-associated import systems are widespread in Gram-negative bacteria. , 2019, 15, e1008435.		0
138	Protease-associated import systems are widespread in Gram-negative bacteria. , 2019, 15, e1008435.		0
139	Protease-associated import systems are widespread in Gram-negative bacteria. , 2019, 15, e1008435.		0
140	Protease-associated import systems are widespread in Gram-negative bacteria. , 2019, 15, e1008435.		0
141	Molecular Mechanisms Underlying the Actions of the Complement System. , 2022, , .		0