Ruopian Fang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3392780/publications.pdf

Version: 2024-02-01

414303 331538 5,340 30 21 32 h-index citations g-index papers 32 32 32 6481 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	More Reliable Lithiumâ€Sulfur Batteries: Status, Solutions and Prospects. Advanced Materials, 2017, 29, 1606823.	11.1	1,414
2	Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. Nature Communications, 2017, 8, 14627.	5.8	912
3	3D Interconnected Electrode Materials with Ultrahigh Areal Sulfur Loading for Li–S Batteries. Advanced Materials, 2016, 28, 3374-3382.	11.1	488
4	The Regulating Role of Carbon Nanotubes and Graphene in Lithiumâ€ion and Lithium–Sulfur Batteries. Advanced Materials, 2019, 31, e1800863.	11.1	339
5	Toward More Reliable Lithium–Sulfur Batteries: An All-Graphene Cathode Structure. ACS Nano, 2016, 10, 8676-8682.	7.3	246
6	Metal–Organic Frameworks (MOFs)â€Derived Nitrogenâ€Doped Porous Carbon Anchored on Graphene with Multifunctional Effects for Lithium–Sulfur Batteries. Advanced Functional Materials, 2018, 28, 1707592.	7.8	246
7	Metal/Oxide Interface Nanostructures Generated by Surface Segregation for Electrocatalysis. Nano Letters, 2015, 15, 7704-7710.	4.5	233
8	A Sulfurâ€Rich Copolymer@CNT Hybrid Cathode with Dualâ€Confinement of Polysulfides for Highâ€Performance Lithium–Sulfur Batteries. Advanced Materials, 2017, 29, 1603835.	11.1	202
9	Single-wall carbon nanotube network enabled ultrahigh sulfur-content electrodes for high-performance lithium-sulfur batteries. Nano Energy, 2017, 42, 205-214.	8.2	183
10	Stable Alkali Metal Ion Intercalation Compounds as Optimized Metal Oxide Nanowire Cathodes for Lithium Batteries. Nano Letters, 2015, 15, 2180-2185.	4.5	160
11	Polysulfide immobilization and conversion on a conductive polar MoC@MoOx material for lithium-sulfur batteries. Energy Storage Materials, 2018, 10, 56-61.	9.5	157
12	Covalent fixing of sulfur in metal–sulfur batteries. Energy and Environmental Science, 2020, 13, 432-471.	15.6	118
13	A trilayer separator with dual function for high performance lithium–sulfur batteries. Journal of Power Sources, 2016, 301, 179-186.	4.0	117
14	Reliable liquid electrolytes for lithium metal batteries. Energy Storage Materials, 2020, 30, 113-129.	9.5	92
15	TiO2/graphene sandwich paper as an anisotropic electrode for high rate lithium ion batteries. Nanoscale, 2013, 5, 7780.	2.8	63
16	Localized polyselenides in a graphene-coated polymer separator for high rate and ultralong life lithium–selenium batteries. Chemical Communications, 2015, 51, 3667-3670.	2,2	63
17	An integrated electrode/separator with nitrogen and nickel functionalized carbon hybrids for advanced lithium/polysulfide batteries. Carbon, 2016, 109, 719-726.	5.4	55
18	An in-situ solidification strategy to block polysulfides in Lithium-Sulfur batteries. Energy Storage Materials, 2021, 37, 224-232.	9.5	55

#	Article	IF	CITATIONS
19	Lithiumâ€Sulfur Batteries: Metal–Organic Frameworks (MOFs)â€Derived Nitrogenâ€Doped Porous Carbon Anchored on Graphene with Multifunctional Effects for Lithium–Sulfur Batteries (Adv. Funct. Mater.) Tj ETQq1	1 0. 88431	44gBT/Ove
20	Hybrid Solid Polymer Electrolytes with Twoâ€Dimensional Inorganic Nanofillers. Chemistry - A European Journal, 2018, 24, 18180-18203.	1.7	41
21	A 3D Multifunctional Architecture for Lithium–Sulfur Batteries with High Areal Capacity. Small Methods, 2018, 2, 1800067.	4.6	33
22	Rational Design of Liâ€Wicking Hosts for Ultrafast Fabrication of Flexible and Stable Lithium Metal Anodes. Small, 2022, 18, e2105308.	5.2	14
23	High-performance lithium–sulfur batteries enabled by regulating Li ₂ S deposition. Physical Chemistry Chemical Physics, 2021, 23, 21385-21398.	1.3	12
24	Binary graphene-based cathode structure for high-performance lithium-sulfur batteries. JPhys Energy, 2020, 2, 015003.	2.3	11
25	Stress release in high-capacity flexible lithium-ion batteries through nested wrinkle texturing of graphene. Journal of Energy Chemistry, 2021, 61, 243-249.	7.1	10
26	2D polyaniline with exchangeable interlayer fluid for fast and stable volumetric dual ion storage. Journal of Energy Chemistry, 2021, 54, 587-594.	7.1	9
27	Lithium Batteries: The Regulating Role of Carbon Nanotubes and Graphene in Lithium–lon and Lithium–Sulfur Batteries (Adv. Mater. 9/2019). Advanced Materials, 2019, 31, 1970066.	11.1	8
28	Micro-Macroscopic Coupled Electrode Architecture for High-Energy-Density Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2019, 2, 7393-7402.	2.5	6
29	High volumetric capacity nanoparticle electrodes enabled by nanofluidic fillers. Energy Storage Materials, 2021, 43, 202-211.	9.5	4
30	Tunable In Situ Stress and Spontaneous Microwrinkling of Multiscale Heterostructures. Journal of Physical Chemistry C, 2019, 123, 26041-26046.	1.5	3