
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3391754/publications.pdf Version: 2024-02-01

IIDI VANICEK

#	Article	lF	CITATIONS
1	Efficient use of accessibility in microRNA target prediction. Nucleic Acids Research, 2011, 39, 19-29.	6.5	409
2	Suppression of immediate-early viral gene expression by herpesvirus-coded microRNAs: Implications for latency. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5453-5458.	3.3	248
3	A KRAB/KAP1-miRNA Cascade Regulates Erythropoiesis Through Stage-Specific Control of Mitophagy. Science, 2013, 340, 350-353.	6.0	95
4	Self-Assembled Molecular Rafts at Liquid Liquid Interfaces for Four-Electron Oxygen Reduction. Journal of the American Chemical Society, 2012, 134, 498-506.	6.6	87
5	Host MicroRNA Regulation of Human Cytomegalovirus Immediate Early Protein Translation Promotes Viral Latency. Journal of Virology, 2014, 88, 5524-5532.	1.5	84
6	Semiclassical evaluation of quantum fidelity. Physical Review E, 2003, 68, 056208.	0.8	75
7	Quantum-instanton evaluation of the kinetic isotope effects. Journal of Chemical Physics, 2005, 123, 054108.	1.2	66
8	Efficient estimators for quantum instanton evaluation of the kinetic isotope effects: Application to the intramolecular hydrogen transfer in pentadiene. Journal of Chemical Physics, 2007, 127, 114309.	1.2	60
9	Dephasing representation: Employing the shadowing theorem to calculate quantum correlation functions. Physical Review E, 2004, 70, 055201.	0.8	53
10	On-the-fly <i>ab initio</i> semiclassical dynamics: Identifying degrees of freedom essential for emission spectra of oligothiophenes. Journal of Chemical Physics, 2014, 140, 244114.	1.2	51
11	Dephasing representation of quantum fidelity for general pure and mixed states. Physical Review E, 2006, 73, 046204.	0.8	50
12	On-the-Fly ab Initio Semiclassical Dynamics of Floppy Molecules: Absorption and Photoelectron Spectra of Ammonia. Journal of Physical Chemistry A, 2015, 119, 5685-5690.	1.1	45
13	Proton Transfer Studied Using a Combined Ab Initio Reactive Potential Energy Surface with Quantum Path Integral Methodology. Journal of Chemical Theory and Computation, 2010, 6, 2566-2580.	2.3	44
14	Kinetic isotope effects and how to describe them. Structural Dynamics, 2017, 4, 061501.	0.9	37
15	On-the-Fly Ab Initio Semiclassical Evaluation of Absorption Spectra of Polyatomic Molecules beyond the Condon Approximation. Journal of Physical Chemistry Letters, 2018, 9, 2367-2372.	2.1	36
16	Relation of exact Gaussian basis methods to the dephasing representation: Theory and application to time-resolved electronic spectra. Journal of Chemical Physics, 2013, 139, 034112.	1.2	35
17	Efficient on-the-fly <i>ab initio</i> semiclassical method for computing time-resolved nonadiabatic electronic spectra with surface hopping or Ehrenfest dynamics. Journal of Chemical Physics, 2014, 141, 134102.	1.2	35
18	Kinetic isotope effect in malonaldehyde determined from path integral Monte Carlo simulations. Physical Chemistry Chemical Physics, 2014, 16, 204-211.	1.3	35

#	Article	IF	CITATIONS
19	Single-Hessian thawed Gaussian approximation. Journal of Chemical Physics, 2019, 150, 154117.	1.2	35
20	Path integral evaluation of equilibrium isotope effects. Journal of Chemical Physics, 2009, 131, 024111.	1.2	33
21	Searching the coding region for microRNA targets. Rna, 2013, 19, 467-474.	1.6	31
22	Nonadiabatic effects in electronic and nuclear dynamics. Structural Dynamics, 2017, 4, 061510.	0.9	31
23	Semiclassical Approach to Photophysics Beyond Kasha's Rule and Vibronic Spectroscopy Beyond the Condon Approximation. The Case of Azulene. Journal of Chemical Theory and Computation, 2020, 16, 2617-2626.	2.3	29
24	Communications: Evaluation of the nondiabaticity of quantum molecular dynamics with the dephasing representation of quantum fidelity. Journal of Chemical Physics, 2010, 132, 241101.	1.2	28
25	On-the-fly <i>ab initio</i> semiclassical evaluation of vibronic spectra at finite temperature. Journal of Chemical Physics, 2020, 153, 024105.	1.2	28
26	Time-Resolved Electronic Spectra with Efficient Quantum Dynamics Methods. Chimia, 2011, 65, 334.	0.3	27
27	On-the-fly <i>ab initio</i> semiclassical evaluation of time-resolved electronic spectra. Journal of Chemical Physics, 2018, 149, 244115.	1.2	27
28	On-the-fly <i>ab initio</i> semiclassical evaluation of third-order response functions for two-dimensional electronic spectroscopy. Journal of Chemical Physics, 2020, 153, 184110.	1.2	25
29	Direct evaluation of the temperature dependence of the rate constant based on the quantum instanton approximation. Journal of Chemical Physics, 2010, 132, 194106.	1.2	23
30	Measuring nonadiabaticity of molecular quantum dynamics with quantum fidelity and with its efficient semiclassical approximation. Journal of Chemical Physics, 2012, 136, 094106.	1.2	23
31	On-the-fly ab initio three thawed Gaussians approximation: A semiclassical approach to Herzberg-Teller spectra. Chemical Physics, 2018, 515, 152-163.	0.9	22
32	On-the-Fly <i>abÂinitio</i> Semiclassical Evaluation of Electronic Coherences in Polyatomic Molecules Reveals a Simple Mechanism of Decoherence. Physical Review Letters, 2020, 125, 083001.	2.9	21
33	Monte Carlo evaluation of the equilibrium isotope effects using the Takahashi–Imada factorization of the Feynman path integral. Chemical Physics Letters, 2013, 588, 11-16.	1.2	20
34	PACCMIT/PACCMIT-CDS: identifying microRNA targets in 3′ UTRs and coding sequences. Nucleic Acids Research, 2015, 43, W474-W479.	6.5	20
35	Efficient geometric integrators for nonadiabatic quantum dynamics. II. The diabatic representation. Journal of Chemical Physics, 2019, 150, 204113.	1.2	20
36	Finite-Temperature, Anharmonicity, and Duschinsky Effects on the Two-Dimensional Electronic Spectra from Ab Initio Thermo-Field Gaussian Wavepacket Dynamics. Journal of Physical Chemistry Letters, 2021, 12, 2997-3005.	2.1	20

#	Article	IF	CITATIONS
37	Beating the Efficiency of Both Quantum and Classical Simulations with a Semiclassical Method. Physical Review Letters, 2011, 107, 214101.	2.9	18
38	Core-Valence Attosecond Transient Absorption Spectroscopy of Polyatomic Molecules. Physical Review Letters, 2021, 127, 123001.	2.9	18
39	Uniform semiclassical wave function for coherent two-dimensional electron flow. Physical Review E, 2003, 67, 016211.	0.8	17
40	Three applications of path integrals: equilibrium and kinetic isotope effects, and the temperature dependence of the rate constant of the [1,5] sigmatropic hydrogen shift in (Z)-1,3-pentadiene. Journal of Molecular Modeling, 2010, 16, 1779-1787.	0.8	17
41	Optimal Use of Conservation and Accessibility Filters in MicroRNA Target Prediction. PLoS ONE, 2012, 7, e32208.	1.1	17
42	Accelerating the calculation of time-resolved electronic spectra with the cellular dephasing representation. Molecular Physics, 2012, 110, 945-955.	0.8	17
43	Efficient evaluation of accuracy of molecular quantum dynamics using dephasing representation. Journal of Chemical Physics, 2009, 131, 041101.	1.2	16
44	Efficient evaluation of the accuracy of molecular quantum dynamics on an approximate analytical or interpolated ab initio potential energy surface. International Journal of Quantum Chemistry, 2010, 110, 2426-2435.	1.0	16
45	Analysis of the accessibility of CLIP bound sites reveals that nucleation of the miRNA:mRNA pairing occurs preferentially at the 3'-end of the seed match. Rna, 2012, 18, 1760-1770.	1.6	16
46	Improving the accuracy and efficiency of time-resolved electronic spectra calculations: Cellular dephasing representation with a prefactor. Journal of Chemical Physics, 2013, 139, 054109.	1.2	16
47	Efficient geometric integrators for nonadiabatic quantum dynamics. I. The adiabatic representation. Journal of Chemical Physics, 2019, 150, 204112.	1.2	16
48	Accelerating quantum instanton calculations of the kinetic isotope effects. Journal of Chemical Physics, 2015, 143, 194104.	1.2	15
49	Replacement manifolds: A method to uniformize semiclassical wave functions. Physical Review E, 2001, 64, 026215.	0.8	13
50	Evaluation of the importance of spin-orbit couplings in the nonadiabatic quantum dynamics with quantum fidelity and with its efficient "on-the-fly― <i>ab initio</i> semiclassical approximation. Journal of Chemical Physics, 2012, 137, 22A516.	1.2	13
51	Applicability of the Thawed Gaussian Wavepacket Dynamics to the Calculation of Vibronic Spectra of Molecules with Double-Well Potential Energy Surfaces. Journal of Chemical Theory and Computation, 2022, 18, 3065-3074.	2.3	13
52	Semiclassical analysis of the quantum instanton approximation. Journal of Chemical Physics, 2019, 151, 144111.	1.2	12
53	Ab Initio Semiclassical Evaluation of Vibrationally Resolved Electronic Spectra With Thawed Gaussians. , 2021, , 199-229.		10
54	Search for long-lasting electronic coherence using on-the-fly <i>ab initio</i> semiclassical dynamics. Journal of Chemical Physics, 2022, 156, 034104.	1.2	10

#	Article	IF	CITATIONS
55	Path integral approach to the quantum fidelity amplitude. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20150164.	1.6	9
56	Efficient Semiclassical Dynamics for Vibronic Spectroscopy beyond Harmonic, Condon, and Zero-Temperature Approximations. Chimia, 2021, 75, 261.	0.3	8
57	Several Semiclassical Approaches to Time-resolved Spectroscopy. Chimia, 2017, 71, 283.	0.3	7
58	A combined on-the-fly/interpolation procedure for evaluating energy values needed in molecular simulations. Journal of Chemical Physics, 2019, 151, 174116.	1.2	7
59	A time-reversible integrator for the time-dependent SchrĶdinger equation on an adaptive grid. Journal of Chemical Physics, 2019, 151, 234102.	1.2	7
60	How important are the residual nonadiabatic couplings for an accurate simulation of nonadiabatic quantum dynamics in a quasidiabatic representation?. Journal of Chemical Physics, 2021, 154, 124119.	1.2	6
61	Time-reversible and norm-conserving high-order integrators for the nonlinear time-dependent SchrĶdinger equation: Application to local control theory. Journal of Chemical Physics, 2021, 154, 154106.	1.2	5
62	High-order geometric integrators for representation-free Ehrenfest dynamics. Journal of Chemical Physics, 2021, 155, 124104.	1.2	5
63	Which form of the molecular Hamiltonian is the most suitable for simulating the nonadiabatic quantum dynamics at a conical intersection?. Journal of Chemical Physics, 2020, 153, 211101.	1.2	4
64	An implicit split-operator algorithm for the nonlinear time-dependent SchrĶdinger equation. Journal of Chemical Physics, 2021, 155, 204109.	1.2	4
65	Role of sampling in evaluating classical time autocorrelation functions. Journal of Chemical Physics, 2013, 139, 104105.	1.2	3
66	Accelerating equilibrium isotope effect calculations. I. Stochastic thermodynamic integration with respect to mass. Journal of Chemical Physics, 2017, 146, .	1.2	3
67	Ultrafast dynamics induced by the interaction of molecules with electromagnetic fields: Several quantum, semiclassical, and classical approaches. Structural Dynamics, 2017, 4, 061509.	0.9	3
68	Efficient sampling avoids the exponential wall in classical simulations of fidelity. Physical Review E, 2011, 84, 066205.	0.8	2
69	Beyond Transition State Theory: Accurate Description of Nuclear Quantum Effects on the Rate and Equilibrium Constants of Chemical Reactions Using Feynman Path Integrals. Chimia, 2011, 65, 715.	0.3	1
70	lmaginary-time nonuniform mesh method for solving the multidimensional Schrödinger equation: Fermionization and melting of quantum Lennard-Jones crystals. Physical Review A, 2013, 88, .	1.0	1
71	Predicting the Genes Regulated by MicroRNAs via Binding Sites in the 3' Untranslated and Coding Regions. Chimia, 2014, 68, 629.	0.3	1
72	Accelerating equilibrium isotope effect calculations. II. Stochastic implementation of direct estimators. Journal of Chemical Physics, 2019, 151, 134116.	1.2	1