Nadeem Ahmad Sheikh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3391633/publications.pdf

Version: 2024-02-01

279701 302012 51 1,678 23 39 citations h-index g-index papers 53 53 53 721 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Comparison and analysis of the Atangana–Baleanu and Caputo–Fabrizio fractional derivatives for generalized Casson fluid model with heat generation and chemical reaction. Results in Physics, 2017, 7, 789-800.	2.0	186
2	Magnetic field effect on blood flow of Casson fluid in axisymmetric cylindrical tube: A fractional model. Journal of Magnetism and Magnetic Materials, 2017, 423, 327-336.	1.0	171
3	Application of Caputo-Fabrizio derivatives to MHD free convection flow of generalized Walters'-B fluid model. European Physical Journal Plus, 2016, 131, 1.	1.2	162
4	A comparative study of Atangana-Baleanu and Caputo-Fabrizio fractional derivatives to the convective flow of a generalized Casson fluid. European Physical Journal Plus, 2017, 132, 1.	1.2	85
5	Exact solutions for free convection flow of generalized Jeffrey fluid: A Caputo-Fabrizio fractional model. AEJ - Alexandria Engineering Journal, 2018, 57, 1849-1858.	3.4	71
6	A new model of fractional Casson fluid based on generalized Fick's and Fourier's laws together with heat and mass transfer. AEJ - Alexandria Engineering Journal, 2020, 59, 2865-2876.	3.4	71
7	A modern approach of Caputo–Fabrizio time-fractional derivative to MHD free convection flow of generalized second-grade fluid in a porous medium. Neural Computing and Applications, 2018, 30, 1865-1875.	3.2	62
8	On the applications of nanofluids to enhance the performance of solar collectors: A comparative analysis of Atangana-Baleanu and Caputo-Fabrizio fractional models. European Physical Journal Plus, 2017, 132, 1.	1.2	58
9	Solutions with special functions for time fractional free convection flow of Brinkman-type fluid. European Physical Journal Plus, 2016, 131, 1.	1.2	52
10	Engine oil based generalized brinkmanâ€type nanoâ€liquid with molybdenum disulphide nanoparticles of spherical shape: Atanganaâ€Baleanu fractional model. Numerical Methods for Partial Differential Equations, 2018, 34, 1472-1488.	2.0	43
11	Effects of Different Shaped Nanoparticles on the Performance of Engine-Oil and Kerosene-Oil: A generalized Brinkman-Type Fluid model with Non-Singular Kernel. Scientific Reports, 2018, 8, 15285.	1.6	42
12	Solutions with Wright Function for Time Fractional Free Convection Flow of Casson Fluid. Arabian Journal for Science and Engineering, 2017, 42, 2565-2572.	1.7	41
13	Convection in ethylene glycol-based molybdenum disulfide nanofluid. Journal of Thermal Analysis and Calorimetry, 2019, 135, 523-532.	2.0	41
14	Heat transfer analysis of generalized Jeffery nanofluid in a rotating frame: Atangana–Balaenu and Caputo–Fabrizio fractional models. Chaos, Solitons and Fractals, 2019, 129, 1-15.	2.5	37
15	Entropy Generation in Different Types of Fractionalized Nanofluids. Arabian Journal for Science and Engineering, 2019, 44, 531-540.	1.7	34
16	Flow of magnetic particles in blood with isothermal heating: A fractional model for two-phase flow. Journal of Magnetism and Magnetic Materials, 2018, 456, 413-422.	1.0	29
17	A theoretical study on the performance of a solar collector using CeO2 and Al2O3 water based nanofluids with inclined plate: Atangana–Baleanu fractional model. Chaos, Solitons and Fractals, 2018, 115, 135-142.	2.5	29
18	Fractional Model of Couple Stress Fluid for Generalized Couette Flow: A Comparative Analysis of Atangana–Baleanu and Caputo–Fabrizio Fractional Derivatives. IEEE Access, 2019, 7, 88643-88655.	2.6	28

#	Article	IF	Citations
19	Time fractional analysis of electro-osmotic flow of Walters's-B fluid with time-dependent temperature and concentration. AEJ - Alexandria Engineering Journal, 2020, 59, 25-38.	3.4	26
20	Caputo–Fabrizio fractional derivatives modeling of transient MHD Brinkman nanoliquid: Applications in food technology. Chaos, Solitons and Fractals, 2020, 131, 109489.	2.5	25
21	MHD Flow of Micropolar Fluid over an Oscillating Vertical Plate Embedded in Porous Media with Constant Temperature and Concentration. Mathematical Problems in Engineering, 2017, 2017, 1-20.	0.6	24
22	Heat and mass transfer phenomena in the flow of Casson fluid over an infinite oscillating plate in the presence of first-order chemical reaction and slip effect. Neural Computing and Applications, 2018, 30, 2159-2172.	3.2	24
23	Enhanced heat transfer in working fluids using nanoparticles with ramped wall temperature: Applications in engine oil. Advances in Mechanical Engineering, 2019, 11, 168781401988098.	0.8	24
24	Natural convection in polyethylene glycol based molybdenum disulfide nanofluid with thermal radiation, chemical reaction and ramped wall temperature. International Journal of Heat and Technology, 2018, 36, 619-631.	0.3	21
25	Atangana–Baleanu fractional model for the flow of Jeffrey nanofluid with diffusion-thermo effects: applications in engine oil. Advances in Difference Equations, 2019, 2019, .	3.5	20
26	Two-Phase Fluctuating Flow of Dusty Viscoelastic Fluid Between Non-Conducting Rigid Plates With Heat Transfer. IEEE Access, 2019, 7, 123299-123306.	2.6	19
27	A Report On Fluctuating Free Convection Flow Of Heat Absorbing Viscoelastic Dusty Fluid Past In A Horizontal Channel With MHD Effect. Scientific Reports, 2020, 10, 8523.	1.6	19
28	UNSTEADY MHD FLOW OF SECOND-GRADE FLUID OVER AN OSCILLATING VERTICAL PLATE WITH ISOTHERMAL TEMPERATURE IN A POROUS MEDIUM WITH HEAT AND MASS TRANSFER BY USING THE LAPLACE TRANSFORM TECHNIQUE. Journal of Porous Media, 2017, 20, 671-690.	1.0	18
29	A generalized model for quantitative analysis of sediments loss: A Caputo time fractional model. Journal of King Saud University - Science, 2021, 33, 101179.	1.6	16
30	A Comprehensive Review on Theoretical Aspects of Nanofluids: Exact Solutions and Analysis. Symmetry, 2020, 12, 725.	1.1	15
31	Fractional model for MHD flow of Casson fluid with cadmium telluride nanoparticles using the generalized Fourier's law. Scientific Reports, 2021, 11, 16117.	1.6	15
32	MATHEMATICAL AND STATISTICAL ANALYSIS OF RL AND RC FRACTIONAL-ORDER CIRCUITS. Fractals, 2020, 28, 2040030.	1.8	14
33	Atangana–Baleanu fractional model for electro-osmotic flow of viscoelastic fluids. Chaos, Solitons and Fractals, 2019, 124, 125-133.	2.5	13
34	Concrete Based Jeffrey Nanofluid Containing Zinc Oxide Nanostructures: Application in Cement Industry. Symmetry, 2020, 12, 1037.	1.1	13
35	Hemodynamic Flow in a Vertical Cylinder with Heat Transfer : Two-phase Caputo Fabrizio Fractional Model. Journal of Magnetics, 2018, 23, 179-191.	0.2	13
36	The unsteady flow of generalized hybrid nanofluids: applications in cementitious materials. Journal of the Australian Ceramic Society, 2019, 55, 657-666.	1.1	12

#	Article	IF	CITATIONS
37	Exact analysis of MHD flow of a Walters'-B fluid over an isothermal oscillating plate embedded in a porous medium. European Physical Journal Plus, 2017, 132, 1.	1.2	10
38	The impact of magnetohydrodynamics and heat transfer on the unsteady flow of Casson fluid in an oscillating cylinder via integral transform: A Caputo–Fabrizio fractional model. Pramana - Journal of Physics, 2019, 93, 1.	0.9	10
39	A Fractal-Fractional Model for the MHD Flow of Casson Fluid in a Channel. Computers, Materials and Continua, 2021, 67, 1385-1398.	1.5	10
40	Magnetohydrodynamic flow of brinkman-type engine oil based MoS2-nanofluid in a rotating disk with hall effect. International Journal of Heat and Technology, 2017, 35, 893-902.	0.3	10
41	Exact solutions for the Atangana-Baleanu time-fractional model of a Brinkman-type nanofluid in a rotating frame: Applications in solar collectors. European Physical Journal Plus, 2019, 134, 1.	1.2	8
42	Heat Transfer Analysis in Ethylene Glycol Based Molybdenum Disulfide Generalized Nanofluid via Atangana–Baleanu Fractional Derivative Approach. Studies in Systems, Decision and Control, 2019, , 217-233.	0.8	8
43	Generalization of the Convective Flow of Brinkman-Type Fluid Using Fourier's and Fick's Laws: Exact Solutions and Entropy Generation. Mathematical Problems in Engineering, 2020, 2020, 1-13.	0.6	7
44	Exact Analysis of Non-Linear Fractionalized Jeffrey Fluid. A Novel Approach of Atangana-Baleanu Fractional Model. Computers, Materials and Continua, 2020, 65, 2033-2047.	1.5	7
45	INFLUENCE OF A POROUS MEDIUM ON THE HYDROMAGNETIC FREE CONVECTION FLOW OF MICROPOLAR FLUID WITH RADIATIVE HEAT FLUX. Journal of Porous Media, 2018, 21, 123-144.	1.0	5
46	Magnetite Molybdenum Disulphide Nanofluid of Grade Two: A Generalized Model with Caputo-Fabrizio Derivative. , 2018, , .		5
47	ANALYSIS OF THE FLOW OF BRINKMAN-TYPE NANOFLUID USING GENERALIZED FOURIER'S AND FICK'S LA Fractals, 2022, 30, .	4WS. 1.8	5
48	Intensification in heat transfer due to hybrid nanoparticles embedded in sodium alginate. Case Studies in Thermal Engineering, 2021, 28, 101440.	2.8	4
49	Analysis of Silver Nanoparticles in Engine Oil: Atangana–Baleanu Fractional Model. Computers, Materials and Continua, 2021, 67, 2915-2932.	1.5	4
50	Introductory Chapter: Fluid Flow Problems. , 0, , .		2
51	Reply to the Comment by A.M. Abd El-Lateif, A.M. Abdel-Hameid on "Solutions with special functions for time fractional free convection flow of Brinkman-type fluid― European Physical Journal Plus, 2017, 132, 1.	1.2	0