Daniel Rial

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3391427/publications.pdf

Version: 2024-02-01

		304602	330025
38	1,450	22	37
papers	citations	h-index	g-index
39	39	39	2603
37	37	37	2003
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Depression as a Glial-Based Synaptic Dysfunction. Frontiers in Cellular Neuroscience, 2015, 9, 521.	1.8	134
2	Optogenetic activation of intracellular adenosine A2A receptor signaling in the hippocampus is sufficient to trigger CREB phosphorylation and impair memory. Molecular Psychiatry, 2015, 20, 1339-1349.	4.1	118
3	Effects of Traumatic Brain Injury of Different Severities on Emotional, Cognitive, and Oxidative Stress-Related Parameters in Mice. Journal of Neurotrauma, 2010, 27, 1883-1893.	1.7	95
4	Atorvastatin prevents hippocampal cell death, neuroinflammation and oxidative stress following amyloid-l̂²1–40 administration in mice: Evidence for dissociation between cognitive deficits and neuronal damage. Experimental Neurology, 2010, 226, 274-284.	2.0	94
5	Behavioral Phenotyping of Parkin-Deficient Mice: Looking for Early Preclinical Features of Parkinson's Disease. PLoS ONE, 2014, 9, e114216.	1.1	94
6	Inactivation of adenosine A2A receptors reverses working memory deficits at early stages of Huntington's disease models. Neurobiology of Disease, 2015, 79, 70-80.	2.1	83
7	Synaptic and memory dysfunction in a \hat{l}^2 -amyloid model of early Alzheimer's disease depends on increased formation of ATP-derived extracellular adenosine. Neurobiology of Disease, 2019, 132, 104570.	2.1	77
8	Adenosine A2A Receptors in the Amygdala Control Synaptic Plasticity and Contextual Fear Memory. Neuropsychopharmacology, 2016, 41, 2862-2871.	2.8	75
9	Rosmarinus officinalis L. hydroalcoholic extract, similar to fluoxetine, reverses depressive-like behavior without altering learning deficit in olfactory bulbectomized mice. Journal of Ethnopharmacology, 2012, 143, 158-169.	2.0	57
10	Proanthocyanidin-rich fraction from Croton celtidifolius Baill confers neuroprotection in the intranasal 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine rat model of Parkinson's disease. Journal of Neural Transmission, 2010, 117, 1337-1351.	1.4	53
11	High-intensity physical exercise disrupts implicit memory in mice: involvement of the striatal glutathione antioxidant system and intracellular signaling. Neuroscience, 2010, 171, 1216-1227.	1.1	47
12	Effects of acute administration of the hydroalcoholic extract of mate tea leaves (Ilex paraguariensis) in animal models of learning and memory. Journal of Ethnopharmacology, 2008, 120, 465-473.	2.0	44
13	Adenosine A _{2b} receptors control A ₁ receptorâ€mediated inhibition of synaptic transmission in the mouse hippocampus. European Journal of Neuroscience, 2015, 41, 878-888.	1.2	43
14	Cellular prion protein modulates age-related behavioral and neurochemical alterations in mice. Neuroscience, 2009, 164, 896-907.	1.1	36
15	Risk is in the Air. Annals of the New York Academy of Sciences, 2009, 1170, 629-636.	1.8	35
16	The Adenosine Neuromodulation System in Schizophrenia. International Review of Neurobiology, 2014, 119, 395-449.	0.9	32
17	Temporal Dissociation of Striatum and Prefrontal Cortex Uncouples Anhedonia and Defense Behaviors Relevant to Depression in 6-OHDA-Lesioned Rats. Molecular Neurobiology, 2016, 53, 3891-3899.	1.9	29
18	Exercise Improves Cognitive Impairment and Dopamine Metabolism in MPTP-Treated Mice. Neurotoxicity Research, 2016, 29, 118-125.	1.3	28

#	Article	IF	Citations
19	Decreased synaptic plasticity in the medial prefrontal cortex underlies short-term memory deficits in 6-OHDA-lesioned rats. Behavioural Brain Research, 2016, 301, 43-54.	1.2	27
20	Central nervous system activity of the proanthocyanidin-rich fraction obtained from <i>Croton celtidifolius</i> in rats. Journal of Pharmacy and Pharmacology, 2010, 62, 1061-1068.	1.2	26
21	Adenosine A2B receptor activation stimulates glucose uptake in the mouse forebrain. Purinergic Signalling, 2015, 11, 561-569.	1.1	26
22	Overexpression of cellular prion protein (PrPC) prevents cognitive dysfunction and apoptotic neuronal cell death induced by amyloid-β (Aβ1–40) administration in mice. Neuroscience, 2012, 215, 79-89.	1.1	23
23	High sucrose consumption induces memory impairment in rats associated with electrophysiological modifications but not with metabolic changes in the hippocampus. Neuroscience, 2016, 315, 196-205.	1.1	22
24	Adenosine A _{2A} receptors modulate the dopamine D ₂ receptorâ€mediated inhibition of synaptic transmission in the mouse prefrontal cortex. European Journal of Neuroscience, 2018, 47, 1127-1134.	1.2	19
25	GPRIN3 Controls Neuronal Excitability, Morphology, and Striatal-Dependent Behaviors in the Indirect Pathway of the Striatum. Journal of Neuroscience, 2019, 39, 7513-7528.	1.7	18
26	Cellular prion protein is present in dopaminergic neurons and modulates the dopaminergic system. European Journal of Neuroscience, 2014, 40, 2479-2486.	1.2	15
27	Parkinson's disease-associated GPR37 receptor regulates cocaine-mediated synaptic depression in corticostriatal synapses. Neuroscience Letters, 2017, 638, 162-166.	1.0	13
28	Moderate traumatic brain injury increases the vulnerability to neurotoxicity induced by systemic administration of 6-hydroxydopamine in mice. Brain Research, 2017, 1663, 78-86.	1.1	12
29	Animal models of olfactory dysfunction in neurodegenerative diseases. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2019, 164, 431-452.	1.0	12
30	The effects of physical exercise on nonmotor symptoms and on neuroimmune RAGE network in experimental parkinsonism. Journal of Applied Physiology, 2017, 123, 161-171.	1.2	11
31	Differential gender-related susceptibility to learning and memory deficits in mice submitted to neonatal freezing microgyria model. Brain Research Bulletin, 2009, 79, 177-181.	1.4	10
32	Mild cognitive deficits associated to neocortical microgyria in mice with genetic deletion of cellular prion protein. Brain Research, 2008, 1241, 148-156.	1.1	9
33	Caffeine Mitigates the Locomotor Hyperactivity in Middleâ€aged Lowâ€density Lipoprotein Receptor (<scp>LDL</scp> r)â€Knockout Mice. CNS Neuroscience and Therapeutics, 2016, 22, 420-422.	1.9	8
34	Ablation of striatal somatostatin interneurons affects MSN morphology and electrophysiological properties, and increases cocaineâ€induced hyperlocomotion in mice. European Journal of Neuroscience, 2020, 51, 1388-1402.	1,2	8
35	Mammalian Target of Rapamycin-RhoA Signaling Impairments in Direct Striatal Projection Neurons Induce Altered Behaviors and Striatal Physiology in Mice. Biological Psychiatry, 2020, 88, 945-954.	0.7	8
36	Aniracetam and DNQX affect the acquisition of rapid tolerance to ethanol in mice. Pharmacology Biochemistry and Behavior, 2009, 92, 32-38.	1.3	5

#	Article	IF	CITATIONS
37	Cellular prion protein (PrPC) modulates ethanol-induced behavioral adaptive changes in mice. Behavioural Brain Research, 2014, 271, 325-332.	1.2	4
38	Adenosine A2A Receptor-Mediated Control of Non-Motor Functions in Parkinson's Disease. Current Topics in Neurotoxicity, 2015, , 183-205.	0.4	0