Annette Oxenius

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3391195/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	HIV preferentially infects HIV-specific CD4+ T cells. Nature, 2002, 417, 95-98.	13.7	1,132
2	Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). European Journal of Immunology, 2019, 49, 1457-1973.	1.6	766
3	Guidelines for the use of flow cytometry and cell sorting in immunological studies [*] . European Journal of Immunology, 2017, 47, 1584-1797.	1.6	505
4	Delay of HIV-1 rebound after cessation of antiretroviral therapy through passive transfer of human neutralizing antibodies. Nature Medicine, 2005, 11, 615-622.	15.2	468
5	Memory Inflation: Continuous Accumulation of Antiviral CD8+ T Cells Over Time. Journal of Immunology, 2003, 170, 2022-2029.	0.4	422
6	IL-21R on T Cells Is Critical for Sustained Functionality and Control of Chronic Viral Infection. Science, 2009, 324, 1576-1580.	6.0	418
7	Regulation of antiviral T cell responses by type I interferons. Nature Reviews Immunology, 2015, 15, 231-242.	10.6	371
8	T cell responses to cytomegalovirus. Nature Reviews Immunology, 2016, 16, 367-377.	10.6	365
9	Virus-specific major MHC class II-restricted TCR-transgenic mice: effects on humoral and cellular immune responses after viral infection. European Journal of Immunology, 1998, 28, 390-400.	1.6	360
10	Immediate Cytotoxicity But Not Degranulation Distinguishes Effector and Memory Subsets of CD8+ T Cells. Journal of Experimental Medicine, 2004, 199, 925-936.	4.2	241
11	TRANCE, a Tumor Necrosis Factor Family Member Critical for CD40 Ligand–independent T Helper Cell Activation. Journal of Experimental Medicine, 1999, 189, 1025-1031.	4.2	240
12	Functional Properties and Lineage Relationship of CD8+ T Cell Subsets Identified by Expression of IL-7 Receptor α and CD62L. Journal of Immunology, 2005, 175, 4686-4696.	0.4	239
13	Disseminated and sustained HIV infection in CD34+ cord blood cell-transplanted Rag2-/-Âc-/- mice. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 15951-15956.	3.3	224
14	Interleukin 2: from immunostimulation to immunoregulation and back again. EMBO Reports, 2007, 8, 1142-1148.	2.0	221
15	Stimulation of HIV-specific cellular immunity by structured treatment interruption fails to enhance viral control in chronic HIV infection. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 13747-13752.	3.3	199
16	Type I Interferons Protect T Cells against NK Cell Attack Mediated by the Activating Receptor NCR1. Immunity, 2014, 40, 961-973.	6.6	199
17	Inducible Costimulator Protein (Icos) Controls T Helper Cell Subset Polarization after Virus and Parasite Infection. Journal of Experimental Medicine, 2000, 192, 53-62.	4.2	192
18	Differential role of IL-2R signaling for CD8+ T cell responses in acute and chronic viral infections. European Journal of Immunology, 2007, 37, 1502-1512.	1.6	180

#	Article	IF	CITATIONS
19	NK cells regulating T cell responses: mechanisms and outcome. Trends in Immunology, 2015, 36, 49-58.	2.9	175
20	Programmed death 1 protects from fatal circulatory failure during systemic virus infection of mice. Journal of Experimental Medicine, 2012, 209, 2485-2499.	4.2	167
21	Inflammasome activation and IL-1Î ² target IL-1α for secretion as opposed to surface expression. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18055-18060.	3.3	166
22	Comparison of Activation versus Induction of Unresponsiveness of Virus-Specific CD4+ and CD8+ T Cells upon Acute versus Persistent Viral Infection. Immunity, 1998, 9, 449-457.	6.6	154
23	A Prospective Trial of Structured Treatment Interruptions in Human Immunodeficiency Virus Infection. Archives of Internal Medicine, 2003, 163, 1220.	4.3	153
24	MHC class I-restricted killing of neurons by virus-specific CD8+ T lymphocytes is effected through the Fas/FasL, but not the perforin pathway. European Journal of Immunology, 2000, 30, 3623-3633.	1.6	148
25	Recognition and Regulation of T Cells by NK Cells. Frontiers in Immunology, 2016, 7, 251.	2.2	139
26	A Novel Role for Neutrophils As Critical Activators of NK Cells. Journal of Immunology, 2008, 181, 7121-7130.	0.4	128
27	Impaired NFAT nuclear translocation results in split exhaustion of virus-specific CD8+ T cell functions during chronic viral infection. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 4565-4570.	3.3	126
28	The Salivary Gland Acts as a Sink for Tissue-Resident Memory CD8 + T Cells, Facilitating Protection from Local Cytomegalovirus Infection. Cell Reports, 2015, 13, 1125-1136.	2.9	124
29	Emergence of Polyfunctional CD8 ⁺ T Cells after Prolonged Suppression of Human Immunodeficiency Virus Replication by Antiretroviral Therapy. Journal of Virology, 2008, 82, 3391-3404.	1.5	122
30	Non-Hematopoietic Cells in Lymph Nodes Drive Memory CD8 T Cell Inflation during Murine Cytomegalovirus Infection. PLoS Pathogens, 2011, 7, e1002313.	2.1	121
31	TREM-1 Deficiency Can Attenuate Disease Severity without Affecting Pathogen Clearance. PLoS Pathogens, 2014, 10, e1003900.	2.1	116
32	Selection of a Broad Repertoire of CD4+ T Cells in H-2Ma0/0 Mice. Immunity, 1997, 7, 187-195.	6.6	115
33	Recall Proliferation Potential of Memory CD8+ T Cells and Antiviral Protection. Journal of Immunology, 2005, 175, 4677-4685.	0.4	114
34	CpG-Containing Oligonucleotides Are Efficient Adjuvants for Induction of Protective Antiviral Immune Responses with T-Cell Peptide Vaccines. Journal of Virology, 1999, 73, 4120-4126.	1.5	108
35	MyD88-Dependent IFN-Î ³ Production by NK Cells Is Key for Control of <i>Legionella pneumophila</i> Infection. Journal of Immunology, 2006, 176, 6162-6171.	0.4	107
36	The Role of Somatic Mutation in the Generation of the Protective Humoral Immune Response against Vesicular Stomatitis Virus. Immunity, 1996, 5, 639-652.	6.6	106

#	Article	IF	CITATIONS
37	From crucial to negligible: Functional <scp>CD</scp> 8 ⁺ <scp>T</scp> â€cell responses and their dependence on <scp>CD</scp> 4 ⁺ <scp>T</scp> â€cell help. European Journal of Immunology, 2012, 42, 1080-1088.	1.6	104
38	On the role of the inhibitory receptor LAG-3 in acute and chronic LCMV infection. International Immunology, 2010, 22, 13-23.	1.8	102
39	Expansion of Protective CD8 + T-Cell Responses Driven by Recombinant Cytomegaloviruses. Journal of Virology, 2004, 78, 2255-2264.	1.5	100
40	TAP1-independent loading of class I molecules by exogenous viral proteins. European Journal of Immunology, 1995, 25, 1739-1743.	1.6	97
41	Presentation of endogenous viral proteins in association with major histocompatibility complex class II: On the role of intracellular compartmentalization, invariant chain and the TAP transporter system. European Journal of Immunology, 1995, 25, 3402-3411.	1.6	97
42	A Novel Th Cell Epitope of <i>Candida albicans</i> Mediates Protection from Fungal Infection. Journal of Immunology, 2012, 188, 5636-5643.	0.4	95
43	How chronic viral infections impact on antigenâ€specific Tâ€cell responses. European Journal of Immunology, 2010, 40, 654-663.	1.6	92
44	Antigen-Dependent and -Independent Mechanisms of T and B Cell Hyperactivation during Chronic HIV-1 Infection. Journal of Virology, 2011, 85, 12102-12113.	1.5	92
45	MHC class II proteins mediate cross-species entry of bat influenza viruses. Nature, 2019, 567, 109-112.	13.7	91
46	Cd4+ T Cell Subsets during Virus Infection. Journal of Experimental Medicine, 2000, 191, 2159-2170.	4.2	89
47	Batf3 transcription factorâ€dependent DC subsets in murine CMV infection: Differential impact on Tâ€cell priming and memory inflation. European Journal of Immunology, 2011, 41, 2612-2618.	1.6	88
48	Antibodies protect against intracellular bacteria by Fc receptor-mediated lysosomal targeting. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20441-20446.	3.3	87
49	Direct activation of antigen-presenting cells is required for CD8 ⁺ T-cell priming and tumor vaccination. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17414-17419.	3.3	86
50	Immune Senescence: Relative Contributions of Age and Cytomegalovirus Infection. PLoS Pathogens, 2012, 8, e1002850.	2.1	84
51	Peptide-induced T cell receptor down-regulation on naive T cells predicts agonist/partial agonist properties and strictly correlates with T cell activation. European Journal of Immunology, 1997, 27, 2195-2203.	1.6	83
52	Peroxiredoxin 6 is required for blood vessel integrity in wounded skin. Journal of Cell Biology, 2007, 179, 747-760.	2.3	82
53	Sustained T follicular helper cell response is essential for control of chronic viral infection. Science Immunology, 2017, 2, .	5.6	80
54	Cytotoxic T Lymphocyte Responses to Human Immunodeficiency Virus: Control and Escape. Stem Cells, 2000, 18, 230-244.	1.4	77

#	Article	IF	CITATIONS
55	Long-lived memory CD8+ T cells are programmed by prolonged antigen exposure and low levels of cellular activation. European Journal of Immunology, 2006, 36, 842-854.	1.6	77
56	IL-10 Suppression of NK/DC Crosstalk Leads to Poor Priming of MCMV-Specific CD4 T Cells and Prolonged MCMV Persistence. PLoS Pathogens, 2012, 8, e1002846.	2.1	77
57	Neutrophil and Alveolar Macrophage-Mediated Innate Immune Control of Legionella pneumophila Lung Infection via TNF and ROS. PLoS Pathogens, 2016, 12, e1005591.	2.1	77
58	Quantifiable cytotoxic T lymphocyte responses and HLA-related risk of progression to AIDS. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 12266-12270.	3.3	76
59	Absence of Cross-Presenting Cells in the Salivary Gland and Viral Immune Evasion Confine Cytomegalovirus Immune Control to Effector CD4 T Cells. PLoS Pathogens, 2011, 7, e1002214.	2.1	75
60	Tumor-necrosis factor impairs CD4+ T cell–mediated immunological control in chronic viral infection. Nature Immunology, 2016, 17, 593-603.	7.0	75
61	CD4+ T-cell–epitope escape mutant virus selected in vivo. Nature Medicine, 2001, 7, 795-800.	15.2	72
62	IL-21 Restricts Virus-driven Treg Cell Expansion in Chronic LCMV Infection. PLoS Pathogens, 2013, 9, e1003362.	2.1	67
63	The Dynamics of Mouse Cytomegalovirus-Specific CD4 T Cell Responses during Acute and Latent Infection. Journal of Immunology, 2008, 181, 1128-1134.	0.4	65
64	Typeâ€l IFN drives the differentiation of shortâ€lived effector CD8 ⁺ T cells in vivo. European Journal of Immunology, 2012, 42, 320-329.	1.6	65
65	A simple method for evaluating the rejection of grafted spleen cells by flow cytometry and tracing adoptively transferred cells by light microscopy. Journal of Immunological Methods, 1997, 207, 33-42.	0.6	63
66	Loss of Viral Control in Early HIVâ€1 Infection Is Temporally Associated with Sequential Escape from CD8+T Cell Responses and Decrease in HIV–1–Specific CD4+and CD8+T Cell Frequencies. Journal of Infectious Diseases, 2004, 190, 713-721.	1.9	63
67	Single B cell technologies for monoclonal antibody discovery. Trends in Immunology, 2021, 42, 1143-1158.	2.9	63
68	Systemic antibody responses to gut commensal bacteria during chronic HIV-1 infection. Gut, 2011, 60, 1506-1519.	6.1	60
69	Virusâ€specific CD8 T cells: activation, differentiation and memory formation. Apmis, 2009, 117, 356-381.	0.9	58
70	Type I IFN Substitutes for T Cell Help during Viral Infections. Journal of Immunology, 2011, 186, 754-763.	0.4	57
71	Macrophage and T Cell Produced IL-10 Promotes Viral Chronicity. PLoS Pathogens, 2013, 9, e1003735.	2.1	55
72	Sarcoma Eradication by Doxorubicin and Targeted TNF Relies upon CD8+ T-cell Recognition of a Retroviral Antigen. Cancer Research, 2017, 77, 3644-3654.	0.4	55

#	Article	IF	CITATIONS
73	Virological and immunological effects of short-course antiretroviral therapy in primary HIV infection. Aids, 2002, 16, 2049-2054.	1.0	53
74	CD8+ T Cells Are Activated in an Antigen-Independent Manner in HIV-Infected Individuals. Journal of Immunology, 2014, 192, 1732-1744.	0.4	52
75	Nonhematopoietic Cells Are Key Players in Innate Control of Bacterial Airway Infection. Journal of Immunology, 2011, 186, 3130-3137.	0.4	51
76	Antigen amount dictates <scp>CD</scp> 8 ⁺ <scp>T</scp> â€cell exhaustion during chronic viral infection irrespective of the type of antigen presenting cell. European Journal of Immunology, 2012, 42, 2290-2304.	1.6	51
77	O Mannosylation of α-Dystroglycan Is Essential for Lymphocytic Choriomeningitis Virus Receptor Function. Journal of Virology, 2005, 79, 14297-14308.	1.5	50
78	Comparison of methods for phylogenetic B-cell lineage inference using time-resolved antibody repertoire simulations (AbSim). Bioinformatics, 2017, 33, 3938-3946.	1.8	50
79	â€~Stem-like' precursors are the fount to sustain persistent CD8+ T cell responses. Nature Immunology, 2022, 23, 836-847.	7.0	50
80	Tissue maintenance of CMV-specific inflationary memory T cells by IL-15. PLoS Pathogens, 2018, 14, e1006993.	2.1	47
81	Entry and Transcription as Key Determinants of Differences in CD4 T-Cell Permissiveness to Human Immunodeficiency Virus Type 1 Infection. Journal of Virology, 2004, 78, 10747-10754.	1.5	46
82	Humoral immunity to HIV-1: kinetics of antibody responses in chronic infection reflects capacity of immune system to improve viral set point. Blood, 2004, 104, 1784-1792.	0.6	46
83	Tâ€cell help permits memory CD8 ⁺ Tâ€cell inflation during cytomegalovirus latency. European Journal of Immunology, 2011, 41, 2248-2259.	1.6	46
84	Viral nucleoprotein antibodies activate TRIM21 and induce T cell immunity. EMBO Journal, 2021, 40, e106228.	3.5	46
85	Systemic antibody responses to gut microbes in health and disease. Gut Microbes, 2012, 3, 42-47.	4.3	45
86	VSV-GP: a Potent Viral Vaccine Vector That Boosts the Immune Response upon Repeated Applications. Journal of Virology, 2014, 88, 4897-4907.	1.5	45
87	Landscape of Exhausted Virus-Specific CD8ÂT Cells in Chronic LCMV Infection. Cell Reports, 2020, 32, 108078.	2.9	45
88	TIGIT limits immune pathology during viral infections. Nature Communications, 2020, 11, 1288.	5.8	45
89	Formation of TCR dimers/trimers as a crucial step for T cell activation. European Journal of Immunology, 1998, 28, 2571-2579.	1.6	44
90	Cutting Edge: Distinct Roles for T Help and CD40/CD40 Ligand in Regulating Differentiation of Proliferation-Competent Memory CD8+ T Cells. Journal of Immunology, 2004, 173, 2217-2221.	0.4	44

#	Article	IF	CITATIONS
91	HIV-1–specific CD4+ T lymphocyte turnover and activation increase upon viral rebound. Journal of Clinical Investigation, 2005, 115, 443-450.	3.9	44
92	Human Immunodeficiency Virus-Specific CD8+ T-Cell Responses Do Not Predict Viral Growth and Clearance Rates during Structured Intermittent Antiretroviral Therapy. Journal of Virology, 2002, 76, 10169-10176.	1.5	43
93	The transcription factor Rfx7 limits metabolism of NK cells and promotes their maintenance and immunity. Nature Immunology, 2018, 19, 809-820.	7.0	42
94	Modulation of asymmetric cell division as a mechanism to boost CD8 ⁺ T cell memory. Science Immunology, 2019, 4, .	5.6	42
95	CD4+ T-Cell Induction and Effector Functions: A Comparison of Immunity against Soluble Antigens and Viral Infections. Advances in Immunology, 1998, 70, 313-367.	1.1	41
96	Antibody – Fc receptor interactions in protection against intracellular pathogens. European Journal of Immunology, 2011, 41, 889-897.	1.6	41
97	Landornamides: Antiviral Ornithineâ€Containing Ribosomal Peptides Discovered through Genome Mining. Angewandte Chemie - International Edition, 2020, 59, 11763-11768.	7.2	41
98	Low Human Immunodeficiency Virus Envelope Diversity Correlates with Low In Vitro Replication Capacity and Predicts Spontaneous Control of Plasma Viremia after Treatment Interruptions. Journal of Virology, 2005, 79, 9026-9037.	1.5	40
99	Induction and protective role of antibodies in <i>Legionella pneumophila</i> infection. European Journal of Immunology, 2007, 37, 3414-3423.	1.6	40
100	Failure to Detect Xenotropic Murine Leukemia Virus–Related Virus in Blood of Individuals at High Risk of Bloodâ€Borne Viral Infections. Journal of Infectious Diseases, 2010, 202, 1482-1485.	1.9	40
101	Adoptive transfer of cytomegalovirusâ€specific effector <scp>CD</scp> 4 ⁺ <scp>T</scp> cells provides antiviral protection from murine <scp>CMV</scp> infection. European Journal of Immunology, 2013, 43, 2886-2895.	1.6	39
102	Variable fate of virus-specific CD4+ T cells during primary HIV-1 infection. European Journal of Immunology, 2001, 31, 3782-3788.	1.6	37
103	Brainâ€resident memory CD8 ⁺ TÂcells induced by congenital CMV infection prevent brain pathology and virus reactivation. European Journal of Immunology, 2018, 48, 950-964.	1.6	37
104	Th Cells Act Via Two Synergistic Pathways To Promote Antiviral CD8+ T Cell Responses. Journal of Immunology, 2010, 185, 5188-5197.	0.4	36
105	Memory <scp>CD</scp> 8 T cell inflation vs tissueâ€resident memory T cells: Same patrollers, same controllers?. Immunological Reviews, 2018, 283, 161-175.	2.8	36
106	Comparing the Kinetics of NK Cells, CD4, and CD8 T Cells in Murine Cytomegalovirus Infection. Journal of Immunology, 2011, 187, 1385-1392.	0.4	35
107	NK cells negatively regulate CD8 T cells via natural cytotoxicity receptor (NCR) 1 during LCMV infection. PLoS Pathogens, 2019, 15, e1007725.	2.1	35
108	Relevance of HIV-1-Specific CD4+ Helper T-Cell Responses During Structured Treatment Interruptions in Patients With CD4+ T-Cell Nadir Above 400/mm3. Journal of Acquired Immune Deficiency Syndromes (1999), 2004, 36, 791-799.	0.9	34

#	ARTICLE	IF	CITATIONS
109	Tcf1+ cells are required to maintain the inflationary T cell pool upon MCMV infection. Nature Communications, 2020, 11, 2295.	5.8	34
110	Quantitative and Qualitative Analysis of Humoral Immunity Reveals Continued and Personalized Evolution in Chronic Viral Infection. Cell Reports, 2020, 30, 997-1012.e6.	2.9	34
111	Light-mediated discovery of surfaceome nanoscale organization and intercellular receptor interaction networks. Nature Communications, 2021, 12, 7036.	5.8	33
112	Functional discrepancies in HIV-specific CD8+ T-lymphocyte populations are related to plasma virus load. Journal of Clinical Immunology, 2002, 22, 363-374.	2.0	32
113	T Cell Memory in the Context of Persistent Herpes Viral Infections. Viruses, 2012, 4, 1116-1143.	1.5	32
114	Exhausted CD8+ T cells exhibit low and strongly inhibited TCR signaling during chronic LCMV infection. Nature Communications, 2020, 11, 4454.	5.8	32
115	Nonâ€neutralizing antibodies protect from chronic LCMV infection independently of activating FcγR or complement. European Journal of Immunology, 2013, 43, 2349-2360.	1.6	31
116	Fuel and brake of memory T cell inflation. Medical Microbiology and Immunology, 2019, 208, 329-338.	2.6	31
117	Adenovirus vector vaccination reprograms pulmonary fibroblastic niches to support protective inflating memory CD8+ T cells. Nature Immunology, 2021, 22, 1042-1051.	7.0	30
118	HIV-1–specific CD4+ T lymphocyte turnover and activation increase upon viral rebound. Journal of Clinical Investigation, 2005, 115, 443-450.	3.9	30
119	CD4+ T cell responses in mice lacking MHC class II molecules specifically on B cells. European Journal of Immunology, 1998, 28, 3763-3772.	1.6	29
120	Discordant Outcomes following Failure of Antiretroviral Therapy Are Associated with Substantial Differences in Human Immunodeficiency Virus-Specific Cellular Immunity. Journal of Virology, 2003, 77, 6041-6049.	1.5	29
121	Advances in cytomegalovirus (CMV) biology and its relationship to health, diseases, and aging. GeroScience, 2020, 42, 495-504.	2.1	29
122	Directex vivo analysis reveals distinct phenotypic patterns of HIV-specific CD8+ T lymphocyte activation in response to therapeutic manipulation of virus load. European Journal of Immunology, 2001, 31, 1115-11121.	1.6	28
123	CD4+ T-Cell Help Is Required for Effective CD8+ T Cell-Mediated Resolution of Acute Viral Hepatitis in Mice. PLoS ONE, 2014, 9, e86348.	1.1	28
124	Platypus: an open-access software for integrating lymphocyte single-cell immune repertoires with transcriptomes. NAR Genomics and Bioinformatics, 2021, 3, lqab023.	1.5	27
125	Chronic viral infections persistently alter marrow stroma and impair hematopoietic stem cell fitness. Journal of Experimental Medicine, 2021, 218, .	4.2	27
126	HIV‣pecific Cellular Immune Response Is Inversely Correlated with Disease Progression as Defined by Decline of CD4+T Cells in Relation to HIV RNA Load. Journal of Infectious Diseases, 2004, 189, 1199-1208.	1.9	26

#	Article	IF	CITATIONS
127	Superior induction and maintenance of protective CD8 T cells in mice infected with mouse cytomegalovirus vector expressing RAE-1Î ³ . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16550-16555.	3.3	26
128	Tracing Antibody Repertoire Evolution by Systems Phylogeny. Frontiers in Immunology, 2018, 9, 2149.	2.2	26
129	Differential Survival of Cytotoxic T Cells and Memory Cell Precursors. Journal of Immunology, 2007, 178, 3483-3491.	0.4	25
130	Kinetic and Mechanistic Requirements for Helping CD8 T Cells. Journal of Immunology, 2008, 180, 1517-1525.	0.4	24
131	Residual HIV-specific CD4 and CD8 T cell frequencies after prolonged antiretroviral therapy reflect pretreatment plasma virus load. Aids, 2002, 16, 2317-2322.	1.0	22
132	Comparison of cytotoxic T lymphocyte efficacy in acute and persistent lymphocytic choriomeningitis virus infection. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 3395-3402.	1.2	22
133	Innate Instruction of CD4+ T Cell Immunity in Respiratory Bacterial Infection. Journal of Immunology, 2012, 189, 616-628.	0.4	22
134	A controlled trial of granulocyte macrophage-colony stimulating factor during interruption of HAART. Aids, 2003, 17, 1487-1492.	1.0	21
135	Functional and biophysical characterization of an HLA-A*6801-restricted HIV-specific T cell receptor. European Journal of Immunology, 2007, 37, 479-486.	1.6	21
136	Identification of Protective B Cell Antigens of <i>Legionella pneumophila</i> . Journal of Immunology, 2012, 189, 841-849.	0.4	21
137	Early primed KLRG1- CMV-specific T cells determine the size of the inflationary T cell pool. PLoS Pathogens, 2019, 15, e1007785.	2.1	21
138	Nanoconfinement of microvilli alters gene expression and boosts T cell activation. Proceedings of the United States of America, 2021, 118, .	3.3	21
139	Reversal of chronic to resolved infection by <scp>IL</scp> â€10 blockade is <scp>LCMV</scp> strain dependent. European Journal of Immunology, 2013, 43, 649-654.	1.6	20
140	Salivary gland resident <scp>APC</scp> s are <scp>F</scp> lt3 <scp>L</scp> ―and <scp>CCR</scp> 2â€independent macrophageâ€iike cells incapable of crossâ€presentation. European Journal of Immunology, 2014, 44, 706-714.	1.6	20
141	Impact of antigen specificity on CD4+T cell activation in chronic HIV-1 infection. BMC Infectious Diseases, 2013, 13, 100.	1.3	19
142	CD4 T Cell Responses in Latent and Chronic Viral Infections. Frontiers in Immunology, 2013, 4, 105.	2.2	19
143	The Janus Face of Follicular T Helper Cells in Chronic Viral Infections. Frontiers in Immunology, 2018, 9, 1162.	2.2	19
144	Fibronectin fibers are highly tensed in healthy organs in contrast to tumors and virus-infected lymph nodes. Matrix Biology Plus, 2020, 8, 100046.	1.9	19

#	Article	IF	CITATIONS
145	Asymmetric cell division shapes naive and virtual memory T-cell immunity during ageing. Nature Communications, 2021, 12, 2715.	5.8	19
146	Dissecting the Contribution of IgG Subclasses in Restricting Airway Infection with <i>Legionella pneumophila</i> . Journal of Immunology, 2014, 193, 4053-4059.	0.4	18
147	Rapid expansion of Treg cells protects from collateral colitis following a viral trigger. Nature Communications, 2020, 11, 1522.	5.8	18
148	Post-translational modification of $\hat{l}\pm$ -dystroglycan is not critical for lymphocytic choriomeningitis virus receptor function in vivo. Journal of General Virology, 2008, 89, 2713-2722.	1.3	17
149	The risks of targeting co-inhibitory pathways to modulate pathogen-directed T cell responses. Trends in Immunology, 2013, 34, 193-199.	2.9	17
150	Chronic virus infection compromises memory bystander T cell function in an IL-6/STAT1-dependent manner. Journal of Experimental Medicine, 2019, 216, 571-586.	4.2	17
151	T cell immunity to cytomegalovirus infection. Current Opinion in Immunology, 2022, 77, 102185.	2.4	16
152	Distribution of functional HIV-specific CD8 T lymphocytes between blood and secondary lymphoid organs after 8–18 months of antiretroviral therapy in acutely infected patients. Aids, 2001, 15, 1653-1656.	1.0	15
153	Novel CD8+ T Cell Antagonists Based on β2-Microglobulin. Journal of Biological Chemistry, 2002, 277, 20840-20846.	1.6	14
154	Single-cell immune repertoire and transcriptome sequencing reveals that clonally expanded and transcriptionally distinct lymphocytes populate the aged central nervous system in mice. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20202793.	1.2	14
155	Intercrypt sentinel macrophages tune antibacterial NF-κB responses in gut epithelial cells via TNF. Journal of Experimental Medicine, 2021, 218, .	4.2	14
156	HIVâ€l replication activates CD4 ⁺ T cells with specificities for persistent herpes viruses. EMBO Molecular Medicine, 2010, 2, 231-244.	3.3	13
157	Estimating the In Vivo Killing Efficacy of Cytotoxic T Lymphocytes across Different Peptide-MHC Complex Densities. PLoS Computational Biology, 2015, 11, e1004178.	1.5	13
158	Antagonism of interferon signaling by fibroblast growth factors promotes viral replication. EMBO Molecular Medicine, 2020, 12, e11793.	3.3	13
159	Effects of Retroviral Protease Inhibitors on Proteasome Function and Processing of HIV-Derived MHC Class I-Restricted Cytotoxic T Lymphocyte Epitopes. AIDS Research and Human Retroviruses, 2001, 17, 1063-1066.	0.5	12
160	T lymphocyte responses against human parvovirus B19: small virus, big response. Pathologie Et Biologie, 2002, 50, 317-325.	2.2	12
161	Structured treatment interruptions in HIV infection: benefit or disappointment?. Expert Review of Anti-Infective Therapy, 2003, 1, 129-139.	2.0	12
162	HIV replication elicits little cytopathic effects in vivo: Analysis of surrogate markers for virus production, cytotoxic T cell response and infected cell death. Journal of Medical Virology, 2006, 78, 1141-1146.	2.5	12

#	Article	IF	CITATIONS
163	Tissue-resident memory T cells in cytomegalovirus infection. Current Opinion in Virology, 2016, 16, 63-69.	2.6	12
164	Profiling Virus-Specific Tcf1+ T Cell Repertoires During Acute and Chronic Viral Infection. Frontiers in Immunology, 2020, 11, 986.	2.2	12
165	Aquimarins, Peptide Antibiotics with Aminoâ€Modified Câ€Termini from a Spongeâ€Derived <i>Aquimarina</i> sp. Bacterium. Angewandte Chemie - International Edition, 2022, 61, .	7.2	12
166	Phenotypic determinism and stochasticity in antibody repertoires of clonally expanded plasma cells. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2113766119.	3.3	12
167	Profiling the specificity of clonally expanded plasma cells during chronic viral infection by singleâ€cell analysis. European Journal of Immunology, 2022, 52, 297-311.	1.6	11
168	TLR7 Signaling Shapes and Maintains Antibody Diversity Upon Virus-Like Particle Immunization. Frontiers in Immunology, 2021, 12, 827256.	2.2	11
169	Investigating the Dynamics of MCMV-Specific CD8+ T Cell Responses in Individual Hosts. Frontiers in Immunology, 2019, 10, 1358.	2.2	10
170	The Orientation of HIV-1 gp120 Binding to the CD4 Receptor Differentially Modulates CD4+ T Cell Activation. Journal of Immunology, 2015, 194, 637-649.	0.4	9
171	No evidence for competition between cytotoxic T-lymphocyte responses in HIV-1 infection. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 4389-4397.	1.2	8
172	<scp>T</scp> â€cell help dependence of memory <scp>CD</scp> 8 ⁺ <scp>T</scp> â€cell expansion upon vaccinia virus challenge relies on <scp>CD</scp> 40 signaling. European Journal of Immunology, 2014, 44, 115-126.	1.6	7
173	Clonally Expanded Virus-Specific CD8 T Cells Acquire Diverse Transcriptional Phenotypes During Acute, Chronic, and Latent Infections. Frontiers in Immunology, 2022, 13, 782441.	2.2	7
174	Mapping the drivers of within-host pathogen evolution using massive data sets. Nature Communications, 2019, 10, 3017.	5.8	6
175	Similar Ligand Densities Required for Restimulation and Effector Function of Cytotoxic T Cells. Cellular Immunology, 1997, 179, 16-21.	1.4	5
176	LCMVâ€specific CD4 TÂcell dependent polyclonal Bâ€cell activation upon persistent viral infection is short lived and extrafollicular. European Journal of Immunology, 2020, 50, 396-403.	1.6	5
177	Inter- and intraspecies comparison of phylogenetic fingerprints and sequence diversity of immunoglobulin variable genes. Immunogenetics, 2020, 72, 279-294.	1.2	5
178	IgM Antibody Repertoire Fingerprints in Mice Are Personalized but Robust to Viral Infection Status. Frontiers in Cellular and Infection Microbiology, 2020, 10, 254.	1.8	5
179	Nonâ€neutralizing antibodies protect against chronic LCMV infection by promoting infection of inflammatory monocytes in mice. European Journal of Immunology, 2021, 51, 1423-1435.	1.6	5
180	Cytomegalovirus restricts ICOSL expression on antigen-presenting cells disabling T cell co-stimulation and contributing to immune evasion. ELife, 2021, 10, .	2.8	5

#	ARTICLE	IF	CITATIONS
181	DeepSARS: simultaneous diagnostic detection and genomic surveillance of SARS-CoV-2. BMC Genomics, 2022, 23, 289.	1.2	5
182	Antibody-Dependent Cellular Phagocytosis and Its Impact on Pathogen Control. , 2014, , 29-47.		4
183	Influenza- and MCMV-induced memory CD8 T cells control respiratory vaccinia virus infection despite residence in distinct anatomical niches. Mucosal Immunology, 2021, 14, 728-742.	2.7	4
184	CD85k Contributes to Regulatory T Cell Function in Chronic Viral Infections. International Journal of Molecular Sciences, 2021, 22, 31.	1.8	4
185	CD4 T Cell-Mediated Immune Control of Cytomegalovirus Infection in Murine Salivary Glands. Pathogens, 2021, 10, 1531.	1.2	4
186	Memory T cells: total recall or just a sense of d $ ilde{A}$ ©j $ ilde{A}$ vu?. Nature Immunology, 2001, 2, 991-993.	7.0	3
187	Assessment of Legionella-Specific Immunity in Mice. Methods in Molecular Biology, 2013, 954, 505-520.	0.4	3
188	Complete mapping of a novel HLA A*6801-restricted HIV-1 Tat epitope directly ex vivo with a rapid modified enzyme-linked immunospot assay. Aids, 2002, 16, 1285-1287.	1.0	3
189	Dendritic cells primed with a chimeric plasmid containing HIVâ€1― <i>gag</i> associated with lysosomalâ€associated proteinâ€1 (LAMP/ <i>gag</i>) is a potential therapeutic vaccine against HIV. FASEB Journal, 2016, 30, 2970-2984.	0.2	2
190	Two sequential layers of antibodyâ€mediated control of <i>Legionella pneumophila</i> infection. European Journal of Immunology, 2019, 49, 1415-1420.	1.6	2
191	Chronic viral infections impinge on naive bystander CD8 T cells. Immunity, Inflammation and Disease, 2020, 8, 249-257.	1.3	2
192	Cross-staining of cytotoxic T lymphocyte populations with peptide-MHC class I multimers of natural HIV-1 variant antigens. Aids, 2001, 15, 121-122.	1.0	2
193	AIDS: the evolving story. Trends in Microbiology, 2000, 8, 147-148.	3.5	1
194	Gut commensal microbes do not represent a dominant antigenic source for continuous CD4 ⁺ Tâ€cell activation during HIVâ€1 infection. European Journal of Immunology, 2015, 45, 3107-3113.	1.6	1
195	Editorial overview: Viral immunology before COVID-19. Current Opinion in Virology, 2021, 52, 217-219.	2.6	1