Jeong-Hwan Kim

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3391178/jeong-hwan-kim-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

37	893	14	29
papers	citations	h-index	g-index
40	980	5.7 avg, IF	3.81
ext. papers	ext. citations		L-index

#	Paper	IF	Citations
37	Methotrexate-Transferrin-Functionalized Fe(Salen)-Polypyrrole Nanocomposites for Targeted Photo-/Magneto-Thermal Cancer Treatments. <i>Journal of Composites Science</i> , 2022 , 6, 136	3	2
36	Ceriporia lacerata Mycelium Culture Medium as a Novel Anti-Aging Microbial Material for Cosmeceutical Application. <i>Cosmetics</i> , 2021 , 8, 101	2.7	2
35	Protective effect of gypenoside LXXV from Gynostemma pentaphyllum against oxidative stress-induced retinal degeneration in vitro and in vivo. <i>Phytomedicine Plus</i> , 2021 , 1, 100050		2
34	Molecular Drug Discovery of Single Ginsenoside Compounds as a Potent Bruton's Tyrosine Kinase Inhibitor. <i>International Journal of Molecular Sciences</i> , 2020 , 21,	6.3	2
33	Pharmaceutical Efficacy of Gypenoside LXXV on Non-Alcoholic Steatohepatitis (NASH). <i>Biomolecules</i> , 2020 , 10,	5.9	4
32	Hybrid metal complex nanocomposites for targeted cancer diagnosis and therapeutics 2019 , 427-461		
31	Two-dimensional nanostructures for biomedical applications. Frontiers of Nanoscience, 2019, 103-120	0.7	2
30	Bottom-up synthesis of hybrid carbon nanoscrolls 2018 , 553-574		2
29	Treatment of oral cancer using magnetized paclitaxel. <i>Oncotarget</i> , 2018 , 9, 15591-15605	3.3	9
28	Hyperthermia and chemotherapy using Fe(Salen) nanoparticles might impact glioblastoma treatment. <i>Scientific Reports</i> , 2017 , 7, 42783	4.9	37
27	Magnetic metal-complex-conducting copolymer corellhell nanoassemblies for a single-drug anticancer platform. NPG Asia Materials, 2017, 9, e367-e367	10.3	16
26	Anticancer luminescent gold quantum clusters for in situ cancer-selective marking-imaging-targeting. <i>Nanoscale</i> , 2017 , 9, 9071-9082	7.7	11
25	The iron chelating agent, deferoxamine detoxifies Fe(Salen)-induced cytotoxicity. <i>Journal of Pharmacological Sciences</i> , 2017 , 134, 203-210	3.7	32
24	Interfacial Transformation of an Amorphous Carbon Nanofilm upon Fe@Ag@Si Nanoparticle Landing and its Colloidal Nanoscrolls: Enhanced Nanocompositing-Based Performance for Bioapplications. <i>ACS Applied Materials & Discorder (Materials & Discorder (Mate</i>	9.5	11
23	Simultaneous hyperthermia-chemotherapy with controlled drug delivery using single-drug nanoparticles. <i>Scientific Reports</i> , 2016 , 6, 24629	4.9	52
22	Bio-inspired Janus composite nanoscrolls for on-demand tumour targeting. RSC Advances, 2016 , 6, 171	79 ./ 171	873
21	Engineering high-performance Pd core-MgO porous shell nanocatalysts via heterogeneous gas-phase synthesis. <i>Nanoscale</i> , 2015 , 7, 13387-92	7.7	16

(2004-2015)

20	A magnetic anti-cancer compound for magnet-guided delivery and magnetic resonance imaging. <i>Scientific Reports</i> , 2015 , 5, 9194	4.9	31	
19	On the formation of ternary metallic-dielectric multicore-shell nanoparticles by inert-gas condensation method. <i>Materials Chemistry and Physics</i> , 2015 , 151, 275-281	4.4	36	
18	A facile single-step synthesis of ternary multicore magneto-plasmonic nanoparticles. <i>Nanoscale</i> , 2014 , 6, 3532-5	7.7	52	
17	Smart composite nanosheets with adaptive optical properties. <i>ACS Applied Materials & Samp; Interfaces</i> , 2014 , 6, 13339-43	9.5	23	
16	Single-step gas phase synthesis of stable iron aluminide nanoparticles with soft magnetic properties. <i>APL Materials</i> , 2014 , 2, 116105	5.7	16	
15	Size-controlled deposition of Ag and Si nanoparticle structures with gas-aggregated sputtering. Materials Research Society Symposia Proceedings, 2013, 1546, 1		4	
14	Programmable Construction of Nanostructures: Assembly of Nanostructures with Various Nanocomponents <i>IEEE Nanotechnology Magazine</i> , 2012 , 6, 19-23	1.7	7	
13	DNA-Linked Nanoparticle Building Blocks for Programmable Matter. <i>Angewandte Chemie</i> , 2011 , 123, 9351-9356	3.6	1	
12	REktitelbild: DNA-Linked Nanoparticle Building Blocks for Programmable Matter (Angew. Chem. 39/2011). <i>Angewandte Chemie</i> , 2011 , 123, 9378-9378	3.6		
11	DNA-linked nanoparticle building blocks for programmable matter. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 9185-90	16.4	73	
10	Back Cover: DNA-Linked Nanoparticle Building Blocks for Programmable Matter (Angew. Chem. Int. Ed. 39/2011). <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 9212-9212	16.4	1	
9	Simultaneously controlled directionality and valency on a water-soluble gold nanoparticle precursor for aqueous-phase anisotropic self-assembly. <i>Langmuir</i> , 2010 , 26, 18634-8	4	11	
8	Adhesion Study of Escherichia coli Cells on Nano-/Microtextured Surfaces in a Microfluidic System. <i>IEEE Nanotechnology Magazine</i> , 2008 , 7, 573-579	2.6	4	
7	Sequential solid-phase fabrication of bifunctional anchors on gold nanoparticles for controllable and scalable nanoscale structure assembly. <i>Langmuir</i> , 2008 , 24, 5667-71	4	12	
6	Nanoscale flagellar-motor based MEMS biosensor for explosive detection 2008,		2	
5	In situ fluorescence microscopy visualization and characterization of nanometer-scale carbon nanotubes labeled with 1-pyrenebutanoic acid, succinimidyl ester. <i>Applied Physics Letters</i> , 2006 , 88, 213	31 ³ 16	19	
4	Rapid diagnostic barcode system for codetection of multiple protein markers. <i>IEEE Sensors Journal</i> , 2006 , 6, 248-253	4	13	
3	Multiplexed electrochemical protein coding based on quantum dot (QD)-bioconjugates for a clinical barcode system. <i>Annual International Conference of the IEEE Engineering in Medicine and Biology</i> Society 2004, 2006, 137-40		1	

2 Electrochemical coding for multiplexed immunoassays of proteins. *Analytical Chemistry*, **2004**, 76, 7126-**3**08 265

Conductimetric membrane strip immunosensor with polyaniline-bound gold colloids as signal generator. *Biosensors and Bioelectronics*, **2000**, 14, 907-15

11.8 109