Daniel T Dawson Ii

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3391139/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An Idealized Physical Model for the Severe Convective Storm Environmental Sounding. Journals of the Atmospheric Sciences, 2021, 78, 653-670.	1.7	8
2	A Triple-Moment Representation of Ice in the Predicted Particle Properties (P3) Microphysics Scheme. Journals of the Atmospheric Sciences, 2021, 78, 439-458.	1.7	26
3	The Role of Elevated Terrain and the Gulf of Mexico in the Production of Severe Local Storm Environments over North America. Journal of Climate, 2021, 34, 7799-7819.	3.2	3
4	Ceilometer-Based Rain-Rate Estimation: A Case-Study Comparison With S-Band Radar and Disdrometer Retrievals in the Context of VORTEX-SE. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58, 8268-8284.	6.3	3
5	The Effect of Surface Drag Strength on Mesocyclone Intensification and Tornadogenesis in Idealized Supercell Simulations. Journals of the Atmospheric Sciences, 2020, 77, 1699-1721.	1.7	16
6	Bin-Emulating Hail Melting in Three-Moment Bulk Microphysics. Journals of the Atmospheric Sciences, 2020, 77, 3361-3385.	1.7	4
7	Climatology of Severe Local Storm Environments and Synoptic-Scale Features over North America in ERA5 Reanalysis and CAM6 Simulation. Journal of Climate, 2020, 33, 8339-8365.	3.2	39
8	Students of Purdue Observing Tornadic Thunderstorms for Research (SPOTTR) A Severe Storms Field Work Course at Purdue University. Bulletin of the American Meteorological Society, 2020, 101, E847-E868.	3.3	5
9	A Method to Control the Environmental Wind Profile in Idealized Simulations of Deep Convection with Surface Friction. Monthly Weather Review, 2019, 147, 3935-3954.	1.4	7
10	Evaluation of Unified Model Microphysics in High-resolution NWP Simulations Using Polarimetric Radar Observations. Advances in Atmospheric Sciences, 2018, 35, 771-784.	4.3	10
11	Simulations of Polarimetric, X-Band Radar Signatures in Supercells. Part I: Description of Experiment and Simulated Ïhv Rings. Journal of Applied Meteorology and Climatology, 2017, 56, 1977-1999.	1.5	22
12	Simulations of Polarimetric, X-Band Radar Signatures in Supercells. Part II: ZDR Columns and Rings and KDP Columns. Journal of Applied Meteorology and Climatology, 2017, 56, 2001-2026.	1.5	31
13	The Role of Surface Drag in Tornadogenesis within an Idealized Supercell Simulation. Journals of the Atmospheric Sciences, 2016, 73, 3371-3395.	1.7	61
14	Sensitivity of Real-Data Simulations of the 3 May 1999 Oklahoma City Tornadic Supercell and Associated Tornadoes to Multimoment Microphysics. Part II: Analysis of Buoyancy and Dynamic Pressure Forces in Simulated Tornado-Like Vortices. Journals of the Atmospheric Sciences, 2016, 73, 1039-1061.	1.7	21
15	Comparison of Simulated Polarimetric Signatures in Idealized Supercell Storms Using Two-Moment Bulk Microphysics Schemes in WRF. Monthly Weather Review, 2016, 144, 971-996.	1.4	50
16	The Cause of Internal Outflow Surges in a High-Resolution Simulation of the 8 May 2003 Oklahoma City Tornadic Supercell. Journals of the Atmospheric Sciences, 2016, 73, 353-370.	1.7	39
17	Sensitivity of Real-Data Simulations of the 3 May 1999 Oklahoma City Tornadic Supercell and Associated Tornadoes to Multimoment Microphysics. Part I: Storm- and Tornado-Scale Numerical Forecasts. Monthly Weather Review, 2015, 143, 2241-2265.	1.4	40
18	Does Wind Shear Cause Hydrometeor Size Sorting?. Journals of the Atmospheric Sciences, 2015, 72, 340-348.	1.7	52

DANIEL T DAWSON II

#	Article	IF	CITATIONS
19	Diagnosing the Intercept Parameters of the Exponential Drop Size Distributions in a Single-Moment Microphysics Scheme and Impact on Supercell Storm Simulations. Journal of Applied Meteorology and Climatology, 2014, 53, 2072-2090.	1.5	34
20	Low-Level ZDR Signatures in Supercell Forward Flanks: The Role of Size Sorting and Melting of Hail. Journals of the Atmospheric Sciences, 2014, 71, 276-299.	1.7	100
21	Progress and challenges with Warn-on-Forecast. Atmospheric Research, 2013, 123, 2-16.	4.1	151
22	EnKF Assimilation of High-Resolution, Mobile Doppler Radar Data of the 4 May 2007 Greensburg, Kansas, Supercell into a Numerical Cloud Model. Monthly Weather Review, 2013, 141, 625-648.	1.4	28
23	The Dependence of QPF on the Choice of Microphysical Parameterization for Lake-Effect Snowstorms. Journal of Applied Meteorology and Climatology, 2013, 52, 363-377.	1.5	23
24	Low-Level Polarimetric Radar Signatures in EnKF Analyses and Forecasts of the May 8, 2003 Oklahoma City Tornadic Supercell: Impact of Multimoment Microphysics and Comparisons with Observation. Advances in Meteorology, 2013, 2013, 1-13.	1.6	8
25	Impact of the Environmental Low-Level Wind Profile on Ensemble Forecasts of the 4 May 2007 Greensburg, Kansas, Tornadic Storm and Associated Mesocyclones. Monthly Weather Review, 2012, 140, 696-716.	1.4	71
26	Comparison of Evaporation and Cold Pool Development between Single-Moment and Multimoment Bulk Microphysics Schemes in Idealized Simulations of Tornadic Thunderstorms. Monthly Weather Review, 2010, 138, 1152-1171.	1.4	177
27	Diagnosing the Intercept Parameter for Exponential Raindrop Size Distribution Based on Video Disdrometer Observations: Model Development. Journal of Applied Meteorology and Climatology, 2008, 47, 2983-2992.	1.5	56
28	Numerical Forecasts of the 15–16 June 2002 Southern Plains Mesoscale Convective System: Impact of Mesoscale Data and Cloud Analysis. Monthly Weather Review, 2006, 134, 1607-1629.	1.4	25