
Pavel V Cherepanov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3390828/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Durable Electrooxidation of Acidic Water Catalysed by a Cobaltâ€Bismuthâ€based Oxide Composite: An Unexpected Role of the Fâ€doped SnO ₂ Substrate. ChemCatChem, 2022, 14, .	3.7	9
2	Stable and Efficient Lithium Metal Anode Cycling through Understanding the Effects of Electrolyte Composition and Electrode Preconditioning. Chemistry of Materials, 2022, 34, 165-177.	6.7	22
3	Intrinsic Catalytic Activity for the Alkaline Hydrogen Evolution of Layer-Expanded MoS ₂ Functionalized with Nanoscale Ni and Co Sulfides. ACS Sustainable Chemistry and Engineering, 2022, 10, 7117-7133.	6.7	6
4	(Digital Presentation) Towards Li-Mediated Nitrogen Reduction Reaction at High Current-to-Ammonia Efficiency. ECS Meeting Abstracts, 2022, MA2022-01, 1788-1788.	0.0	0
5	Understanding the Factors Determining the Faradaic Efficiency and Rate of the Lithium Redox-Mediated N ₂ Reduction to Ammonia. Journal of Physical Chemistry C, 2021, 125, 11402-11410.	3.1	26
6	Stable Acidic Water Oxidation with a Cobalt–Iron–Lead Oxide Catalyst Operating via a Cobaltâ€Selective Selfâ€Healing Mechanism. Angewandte Chemie - International Edition, 2021, 60, 15821-15826.	13.8	23
7	Stable Acidic Water Oxidation with a Cobalt–Iron–Lead Oxide Catalyst Operating via a Cobaltâ€Selective Selfâ€Healing Mechanism. Angewandte Chemie, 2021, 133, 15955-15960.	2.0	3
8	Nitrogen reduction to ammonia at high efficiency and rates based on a phosphonium proton shuttle. Science, 2021, 372, 1187-1191.	12.6	289
9	Mixed metal–antimony oxide nanocomposites: low pH water oxidation electrocatalysts with outstanding durability at ambient and elevated temperatures. Journal of Materials Chemistry A, 2021, 9, 27468-27484.	10.3	19
10	Enhancement of the intrinsic light harvesting capacity of Cs ₂ AgBiBr ₆ double perovskite <i>via</i> modification with sulphide. Journal of Materials Chemistry A, 2020, 8, 2008-2020.	10.3	54
11	A Roadmap to the Ammonia Economy. Joule, 2020, 4, 1186-1205.	24.0	782
12	A safe Li–Se battery in an ionic liquid-based electrolyte operating at 25–70 °C by using a N,S,O tri-doped mesoporous carbon host material. Sustainable Energy and Fuels, 2020, 4, 2322-2332.	4.9	15
13	Electrochemical Behavior and Redox-Dependent Disassembly of Gallic Acid/Fe ^{III} Metal–Phenolic Networks. ACS Applied Materials & Interfaces, 2018, 10, 5828-5834.	8.0	37
14	Cobalt Phosphate Nanostructures for Non-Enzymatic Glucose Sensing at Physiological pH. ACS Applied Materials & Interfaces, 2018, 10, 42786-42795.	8.0	64
15	Phase structuring in metal alloys: Ultrasound-assisted top-down approach to engineering of nanostructured catalytic materials. Ultrasonics Sonochemistry, 2017, 35, 556-562.	8.2	11
16	Enhanced electrocatalytic performance of palladium nanoparticles with high energy surfaces in formic acid oxidation. Journal of Materials Chemistry A, 2017, 5, 11582-11585.	10.3	58
17	Shape-Dependent Interactions of Palladium Nanocrystals with Hydrogen. Small, 2016, 12, 2450-2458.	10.0	34
18	Up to which temperature ultrasound can heat the particle?. Ultrasonics Sonochemistry, 2015, 26, 9-14.	8.2	24

#	Article	IF	CITATIONS
19	Effect of high intensity ultrasound on Al3Ni2, Al3Ni crystallite size in binary AlNi (50 wt% of Ni) alloy. Ultrasonics Sonochemistry, 2015, 23, 26-30.	8.2	32
20	Ultrasound assisted formation of Al–Ni electrocatalyst for hydrogen evolution. Ultrasonics Sonochemistry, 2015, 23, 142-147.	8.2	39