
Pavel B Kopnin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3390814/publications.pdf Version: 2024-02-01

DAVEL R KODNIN

#	Article	IF	CITATIONS
1	Repression of Sestrin Family Genes Contributes to Oncogenic Ras-Induced Reactive Oxygen Species Up-regulation and Genetic Instability. Cancer Research, 2007, 67, 4671-4678.	0.4	123
2	p53 hot-spot mutants increase tumor vascularization via ROS-mediated activation of the HIF1/VEGF-A pathway. Cancer Letters, 2009, 276, 143-151.	3.2	92
3	Components of the hepatocellular carcinoma microenvironment and their role in tumor progression. Biochemistry (Moscow), 2017, 82, 861-873.	0.7	88
4	Bioceramics Composed of Octacalcium Phosphate Demonstrate Enhanced Biological Behavior. ACS Applied Materials & Interfaces, 2014, 6, 16610-16620.	4.0	85
5	Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 3. Inhibitory effect of SkQ1 on tumor development from p53-deficient cells. Biochemistry (Moscow), 2008, 73, 1300-1316.	0.7	82
6	Disruption of actin microfilaments by cytochalasin D leads to activation of p53. FEBS Letters, 1998, 430, 353-357.	1.3	75
7	ROS up-regulation mediates Ras-induced changes of cell morphology and motility. Experimental Cell Research, 2006, 312, 2066-2073.	1.2	70
8	Downregulation of VEGF-C expression in lung and colon cancer cells decelerates tumor growth and inhibits metastasis via multiple mechanisms. Oncogene, 2012, 31, 1389-1397.	2.6	66
9	Tumor promotion by \hat{I}^3 and suppression by \hat{I}^2 non-muscle actin isoforms. Oncotarget, 2015, 6, 14556-14571.	0.8	50
10	Ras-induced ROS upregulation affecting cell proliferation is connected with cell type-specific alterations of HSF1/ <i>SESN3</i> /p21 ^{Cip1/WAF1} pathways. Cell Cycle, 2013, 12, 826-836.	1.3	46
11	p53-dependent effects of RAS oncogene on chromosome stability and cell cycle checkpoints. Oncogene, 1999, 18, 3135-3142.	2.6	40
12	Cell type-specific effects of asbestos on intracellular ROS levels, DNA oxidation and G1 cell cycle checkpoint. Oncogene, 2004, 23, 8834-8840.	2.6	34
13	Octacalcium phosphate ceramics combined with gingiva-derived stromal cells for engineered functional bone grafts. Biomedical Materials (Bristol), 2014, 9, 055005.	1.7	32
14	Interaction of microtubules with the actin cytoskeleton via cross-talk of EB1-containing +TIPs and Î ³ -actin in epithelial cells. Oncotarget, 2016, 7, 72699-72715.	0.8	32
15	γH2AX, 53BP1 and Rad51 protein foci changes in mesenchymal stem cells during prolonged X-ray irradiation. Oncotarget, 2017, 8, 64317-64329.	0.8	31
16	E-Cadherin repression increases amount of cancer stem cells in human A549 lung adenocarcinoma and stimulates tumor growth. Cell Cycle, 2016, 15, 1084-1092.	1.3	30
17	Diffuse colonies of human skin fibroblasts in relation to cellular senescence and proliferation. Aging, 2017, 9, 1404-1413.	1.4	28
18	Mitochondria-targeted antioxidant SkQ1 suppresses fibrosarcoma and rhabdomyosarcoma tumour cell growth. Cell Cycle, 2018, 17, 1797-1811.	1.3	24

PAVEL B KOPNIN

#	Article	IF	CITATIONS
19	Targeting of FGF-Signaling Re-Sensitizes Gastrointestinal Stromal Tumors (GIST) to Imatinib In Vitro and In Vivo. Molecules, 2018, 23, 2643.	1.7	19
20	Divergent impact of actin isoforms on cell cycle regulation. Cell Cycle, 2018, 17, 2610-2621.	1.3	18
21	Clinical-instrumental and morphological evaluation of the effect of autologous dermal fibroblasts administration. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 778-786.	1.3	14
22	Spontaneous γH2AX foci in human dermal fibroblasts in relation to proliferation activity and aging. Aging, 2019, 11, 4536-4546.	1.4	14
23	Molecular Mechanisms of Changes in Homeostasis of the Dermal Extracellular Matrix: Both Involutional and Mediated by Ultraviolet Radiation. International Journal of Molecular Sciences, 2022, 23, 6655.	1.8	14
24	Age-Related Changes in the Fibroblastic Differon of the Dermis: Role in Skin Aging. International Journal of Molecular Sciences, 2022, 23, 6135.	1.8	13
25	Myogenic potential of human alveolar mucosa derived cells. Cell Cycle, 2017, 16, 545-555.	1.3	12
26	The Design, Synthesis, and Biological Activities of Pyrrole-Based Carboxamides: The Novel Tubulin Inhibitors Targeting the Colchicine-Binding Site. Molecules, 2021, 26, 5780.	1.7	12
27	Inhibition of FGF2-Mediated Signaling in GIST—Promising Approach for Overcoming Resistance to Imatinib. Cancers, 2020, 12, 1674.	1.7	10
28	Transformation by RAS oncogene decreases the width of substrate-spread fibroblasts but not their length. Cell Biology International, 2007, 31, 220-223.	1.4	8
29	The Protective Role of p53 in Ras-Induced Transformation of REF52 Cells. Molecular Biology, 2003, 37, 392-403.	0.4	5
30	Ethyl-2-amino-pyrrole-3-carboxylates are active against imatinib-resistant gastrointestinal stromal tumors in vitro and in vivo. Anti-Cancer Drugs, 2019, 30, 475-484.	0.7	5
31	Gingiva as a source of stromal cells with high differentiating and reparative potential. Genes and Cells, 2017, 12, 37-51.	0.2	2
32	A p53 mutation is required for stable transformation of REF52 cells by themyc andras oncogenes. Molecular Biology, 2000, 34, 277-285.	0.4	1
33	Impaired Expression of Cytoplasmic Actins Leads to Chromosomal Instability of MDA-MB-231 Basal-Like Mammary Gland Cancer Cell Line. Molecules, 2021, 26, 2151.	1.7	1
34	Effect of caveolin-1 knockdown on the protein composition of extracellular vesicles secreted by non-small cell lung cancer cells. Uspehi Molekularnoj Onkologii, 2021, 8, 41-46.	0.1	0
35	Effects of autologous gingiva-derived cells with myogenic potential on regeneration of skeletal muscle. Genes and Cells, 2017, 12, 71-81.	0.2	0
36	The role of skeletal muscle tissue extracellular matrix components in myogenesis. Genes and Cells, 2018, 13, 17-23.	0.2	0

#	Article	IF	CITATIONS
37	Notch signaling pathway: dual role in tumour progression and therapeutic opportunities for bladder cancer. Onkourologiya, 2019, 15, 108-116.	0.1	0