Paul C Lemaire

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3390507/publications.pdf

Version: 2024-02-01

17	821	687363	888059
papers	citations	h-index	g-index
17 all docs	17 docs citations	17 times ranked	1237

#	Article	IF	CITATIONS
1	Relation between Reactive Surface Sites and Precursor Choice for Area-Selective Atomic Layer Deposition Using Small Molecule Inhibitors. Journal of Physical Chemistry C, 2022, 126, 4845-4853.	3.1	15
2	Extending growth inhibition during area-selective atomic layer deposition of Al ₂ O ₃ on aminosilane-functionalized SiO ₂ . Chemical Communications, 2022, 58, 6650-6652.	4.1	1
3	Insight into the removal and reapplication of small inhibitor molecules during area-selective atomic layer deposition of SiO2. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, .	2.1	15
4	Thermally Driven Self-Limiting Atomic Layer Etching of Metallic Tungsten Using WF ₆ and O ₂ . ACS Applied Materials & Interfaces, 2018, 10, 9147-9154.	8.0	32
5	Ab initio analysis of nucleation reactions during tungsten atomic layer deposition on Si(100) and W(110) substrates. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2018, 36, 061507.	2.1	4
6	Tungsten–Carbon Nanotube Composite Photonic Crystals as Thermally Stable Spectralâ€Selective Absorbers and Emitters for Thermophotovoltaics. Advanced Energy Materials, 2018, 8, 1801471.	19.5	57
7	Reversible Low-Temperature Metal Node Distortion during Atomic Layer Deposition of Al ₂ O ₃ and TiO ₂ on UiO-66-NH ₂ Metal–Organic Framework Crystal Surfaces. ACS Applied Materials & Distribution of Surfa	8.0	76
8	Understanding inherent substrate selectivity during atomic layer deposition: Effect of surface preparation, hydroxyl density, and metal oxide composition on nucleation mechanisms during tungsten ALD. Journal of Chemical Physics, 2017, 146, 052811.	3.0	52
9	Thermal Selective Vapor Etching of TiO ₂ : Chemical Vapor Etching via WF ₆ and Self-Limiting Atomic Layer Etching Using WF ₆ and BCl ₃ . Chemistry of Materials, 2017, 29, 6653-6665.	6.7	35
10	Waferâ€Scale Selectiveâ€Area Deposition of Nanoscale Metal Oxide Features Using Vapor Saturation into Patterned Poly(methyl methacrylate) Templates. Advanced Materials Interfaces, 2016, 3, 1500431.	3.7	22
11	Rapid visible color change and physical swelling during water exposure in triethanolamine-metalcone films formed by molecular layer deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2016, 34, .	2.1	12
12	Copper Benzenetricarboxylate Metal–Organic Framework Nucleation Mechanisms on Metal Oxide Powders and Thin Films formed by Atomic Layer Deposition. ACS Applied Materials & Interfaces, 2016, 8, 9514-9522.	8.0	60
13	Using Hydrogen To Expand the Inherent Substrate Selectivity Window During Tungsten Atomic Layer Deposition. Chemistry of Materials, 2016, 28, 117-126.	6.7	62
14	Conformal and highly adsorptive metal–organic framework thin films via layer-by-layer growth on ALD-coated fiber mats. Journal of Materials Chemistry A, 2015, 3, 1458-1464.	10.3	100
15	Facile Conversion of Hydroxy Double Salts to Metal–Organic Frameworks Using Metal Oxide Particles and Atomic Layer Deposition Thin-Film Templates. Journal of the American Chemical Society, 2015, 137, 13756-13759.	13.7	174
16	Metal–Organic Frameworks: Highly Adsorptive, MOFâ€Functionalized Nonwoven Fiber Mats for Hazardous Gas Capture Enabled by Atomic Layer Deposition (Adv. Mater. Interfaces 4/2014). Advanced Materials Interfaces, 2014, 1, .	3.7	5
17	Highly Adsorptive, MOFâ€Functionalized Nonwoven Fiber Mats for Hazardous Gas Capture Enabled by Atomic Layer Deposition. Advanced Materials Interfaces, 2014, 1, 1400040.	3.7	99