
Yuan Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3390371/publications.pdf Version: 2024-02-01

YUAN CHENC

#	Article	IF	CITATIONS
1	Exploring the severe winter haze in Beijing: the impact of synoptic weather, regional transport and heterogeneous reactions. Atmospheric Chemistry and Physics, 2015, 15, 2969-2983.	4.9	843
2	Biomass burning contribution to Beijing aerosol. Atmospheric Chemistry and Physics, 2013, 13, 7765-7781.	4.9	343
3	Mass absorption efficiency of elemental carbon and water-soluble organic carbon in Beijing, China. Atmospheric Chemistry and Physics, 2011, 11, 11497-11510.	4.9	266
4	The characteristics of brown carbon aerosol during winter in Beijing. Atmospheric Environment, 2016, 127, 355-364.	4.1	213
5	Source apportionment of PM2.5 nitrate and sulfate in China using a source-oriented chemical transport model. Atmospheric Environment, 2012, 62, 228-242.	4.1	192
6	Humidity plays an important role in the PM 2.5 pollution in Beijing. Environmental Pollution, 2015, 197, 68-75.	7.5	170
7	A yearlong study of water-soluble organic carbon in Beijing II: Light absorption properties. Atmospheric Environment, 2014, 89, 235-241.	4.1	155
8	Measurement of humic-like substances in aerosols: A review. Environmental Pollution, 2013, 181, 301-314.	7.5	138
9	A yearlong study of water-soluble organic carbon in Beijing I: Sources and its primary vs. secondary nature. Atmospheric Environment, 2014, 92, 514-521.	4.1	122
10	Brown and black carbon in Beijing aerosol: Implications for the effects of brown coating on light absorption by black carbon. Science of the Total Environment, 2017, 599-600, 1047-1055.	8.0	92
11	Characteristics of particulate PAHs during a typical haze episode in Guangzhou, China. Atmospheric Research, 2011, 102, 91-98.	4.1	88
12	Source of atmospheric heavy metals in winter in Foshan, China. Science of the Total Environment, 2014, 493, 262-270.	8.0	88
13	Seasonal variations and source estimation of saccharides in atmospheric particulate matter in Beijing, China. Chemosphere, 2016, 150, 365-377.	8.2	86
14	The characteristics of Beijing aerosol during two distinct episodes: Impacts of biomass burning and fireworks. Environmental Pollution, 2014, 185, 149-157.	7.5	80
15	Chemical characteristics of size-resolved PM2.5 at a roadside environment in Beijing, China. Environmental Pollution, 2012, 161, 215-221.	7.5	79
16	Long-term trends of chemical characteristics and sources of fine particle in Foshan City, Pearl River Delta: 2008–2014. Science of the Total Environment, 2016, 565, 519-528.	8.0	79
17	Contribution of Hydroxymethane Sulfonate to Ambient Particulate Matter: A Potential Explanation for High Particulate Sulfur During Severe Winter Haze in Beijing. Geophysical Research Letters, 2018, 45, 11,969.	4.0	72
18	The impact of the pollution control measures for the 2008 Beijing Olympic Games on the chemical composition of aerosols. Atmospheric Environment, 2011, 45, 2789-2794.	4.1	68

YUAN CHENG

#	Article	IF	CITATIONS
19	Carbonaceous species in PM _{2.5} at a pair of rural/urban sites in Beijing, 2005–2008. Atmospheric Chemistry and Physics, 2011, 11, 7893-7903.	4.9	63
20	Chemical characterization of humic-like substances (HULIS) in PM2.5 in Lanzhou, China. Science of the Total Environment, 2016, 573, 1481-1490.	8.0	63
21	Dust storms come to Central and Southwestern China, too: implications from a major dust event in Chongqing. Atmospheric Chemistry and Physics, 2010, 10, 2615-2630.	4.9	59
22	Ambient organic carbon to elemental carbon ratios: Influences of the measurement methods and implications. Atmospheric Environment, 2011, 45, 2060-2066.	4.1	48
23	Positive sampling artifact of carbonaceous aerosols and its influence on the thermal-optical split of OC/EC. Atmospheric Chemistry and Physics, 2009, 9, 7243-7256.	4.9	47
24	Effectiveness evaluation of temporary emission control action in 2016 in winter in Shijiazhuang, China. Atmospheric Chemistry and Physics, 2018, 18, 7019-7039.	4.9	46
25	Measurement of semivolatile carbonaceous aerosols and its implications: A review. Environment International, 2009, 35, 674-681.	10.0	42
26	Sources of excess urban carbonaceous aerosol in the Pearl River Delta Region, China. Atmospheric Environment, 2011, 45, 1175-1182.	4.1	39
27	Comparison of two thermal-optical methods for the determination of organic carbon and elemental carbon: Results from the southeastern United States. Atmospheric Environment, 2011, 45, 1913-1918.	4.1	38
28	Improved measurement of carbonaceous aerosol: evaluation of the sampling artifacts and inter-comparison of the thermal-optical analysis methods. Atmospheric Chemistry and Physics, 2010, 10, 8533-8548.	4.9	36
29	Evaluation of fungal spore characteristics in Beijing, China, based on molecular tracer measurements. Environmental Research Letters, 2013, 8, 014005.	5.2	35
30	Characterization of carbon fractions in carbonaceous aerosols from typical fossil fuel combustion sources. Fuel, 2019, 254, 115620.	6.4	35
31	Light absorption by biomass burning source emissions. Atmospheric Environment, 2016, 127, 347-354.	4.1	34
32	Intercomparison of Thermal–Optical Methods for the Determination of Organic and Elemental Carbon: Influences of Aerosol Composition and Implications. Environmental Science & Technology, 2011, 45, 10117-10123.	10.0	33
33	Characterization of saccharides and associated usage in determining biogenic and biomass burning aerosols in atmospheric fine particulate matter in the North China Plain. Science of the Total Environment, 2019, 650, 2939-2950.	8.0	33
34	Strong biomass burning contribution to ambient aerosol during heating season in a megacity in Northeast China: Effectiveness of agricultural fire bans?. Science of the Total Environment, 2021, 754, 142144.	8.0	33
35	PM _{2.5} mass, chemical composition, and light extinction before and during the 2008 Beijing Olympics. Journal of Geophysical Research D: Atmospheres, 2013, 118, 12,158.	3.3	32
36	Ambient organic carbon to elemental carbon ratios: Influence of the thermal–optical temperature protocol and implications. Science of the Total Environment, 2014, 468-469, 1103-1111.	8.0	28

YUAN CHENG

#	Article	IF	CITATIONS
37	Biomass burning impacts on ambient aerosol at a background site in East China: Insights from a yearlong study. Atmospheric Research, 2020, 231, 104660.	4.1	27
38	Rapid detection and quantification of fungal spores in the urban atmosphere by flow cytometry. Journal of Aerosol Science, 2013, 66, 179-186.	3.8	26
39	Characteristics of 2-methyltetrols in ambient aerosol in Beijing, China. Atmospheric Environment, 2012, 59, 376-381.	4.1	23
40	Intercomparison of thermal-optical method with different temperature protocols: Implications from source samples and solvent extraction. Atmospheric Environment, 2012, 61, 453-462.	4.1	22
41	Sources of primary and secondary organic aerosol and their diurnal variations. Journal of Hazardous Materials, 2014, 264, 536-544.	12.4	22
42	Mapping the drivers of formaldehyde (HCHO) variability from 2015 to 2019 over eastern China: insights from Fourier transform infrared observation and GEOS-Chem model simulation. Atmospheric Chemistry and Physics, 2021, 21, 6365-6387.	4.9	20
43	Investigating the effect of sources and meteorological conditions on wintertime haze formation in Northeast China: A case study in Harbin. Science of the Total Environment, 2021, 801, 149631.	8.0	20
44	Contribution of fungal spores to organic carbon in ambient aerosols in Beijing, China. Atmospheric Pollution Research, 2017, 8, 351-358.	3.8	18
45	Brown carbon's emission factors and optical characteristics in household biomass burning: developing a novel algorithm for estimating the contribution of brown carbon. Atmospheric Chemistry and Physics, 2021, 21, 2329-2341.	4.9	18
46	Developing chemical signatures of particulate air pollution in the Pearl River Delta region, China. Journal of Environmental Sciences, 2011, 23, 1143-1149.	6.1	17
47	Characterization of carbonaceous aerosol by the stepwise-extraction thermal–optical-transmittance (SE-TOT) method. Atmospheric Environment, 2012, 59, 551-558.	4.1	17
48	Size distribution and coating thickness of black carbon from the Canadian oil sands operations. Atmospheric Chemistry and Physics, 2018, 18, 2653-2667.	4.9	17
49	Measurement report: Chemical characteristics of PM _{2.5} during typical biomass burning season at an agricultural site of the North China Plain. Atmospheric Chemistry and Physics, 2021, 21, 3181-3192.	4.9	17
50	New open burning policy reshaped the aerosol characteristics of agricultural fire episodes in Northeast China. Science of the Total Environment, 2022, 810, 152272.	8.0	17
51	Uncertainties in thermal-optical measurements of black carbon: Insights from source and ambient samples. Science of the Total Environment, 2019, 656, 239-249.	8.0	16
52	Strong Impacts of Legitimate Open Burning on Brown Carbon Aerosol in Northeast China. Environmental Science and Technology Letters, 2021, 8, 732-738.	8.7	16
53	Sampling artifacts of organic and inorganic aerosol: Implications for the speciation measurement of particulate matter. Atmospheric Environment, 2012, 55, 229-233.	4.1	15
54	Model vs. observation discrepancy in aerosol characteristics during a half-year long campaign in Northeast China: The role of biomass burning. Environmental Pollution, 2021, 269, 116167.	7.5	15

YUAN CHENG

#	Article	IF	CITATIONS
55	Dramatic changes in Harbin aerosol during 2018–2020: the roles of open burning policy and secondary aerosol formation. Atmospheric Chemistry and Physics, 2021, 21, 15199-15211.	4.9	15
56	Influence of High Relative Humidity on Secondary Organic Carbon: Observations at a Background Site in East China. Journal of Meteorological Research, 2019, 33, 905-913.	2.4	13
57	Identification of PM2.5 sources contributing to both Brown carbon and reactive oxygen species generation in winter in Beijing, China. Atmospheric Environment, 2021, 246, 118069.	4.1	13
58	Secondary inorganic aerosol during heating season in a megacity in Northeast China: Evidence for heterogeneous chemistry in severe cold climate region. Chemosphere, 2020, 261, 127769.	8.2	12
59	A newly identified calculation discrepancy of the Sunset semi-continuous carbon analyzer. Atmospheric Measurement Techniques, 2014, 7, 1969-1977.	3.1	11
60	Investigation on sampling artifacts of particle associated PAHs using ozone denuder systems. Frontiers of Environmental Science and Engineering, 2014, 8, 284-292.	6.0	11
61	The effects of biodiesels on semivolatile and nonvolatile particulate matter emissions from a light-duty diesel engine. Environmental Pollution, 2017, 230, 72-80.	7.5	10
62	Integration of field observation and air quality modeling to characterize Beijing aerosol in different seasons. Chemosphere, 2020, 242, 125195.	8.2	10
63	Formation of secondary inorganic aerosol in a frigid urban atmosphere. Frontiers of Environmental Science and Engineering, 2021, 16, 1.	6.0	10
64	Quantifying variability, source, and transport of CO in the urban areas over the Himalayas and Tibetan Plateau. Atmospheric Chemistry and Physics, 2021, 21, 9201-9222.	4.9	10
65	Spatiotemporal variation and source analysis of air pollutants in the Harbin-Changchun (HC) region of China during 2014–2020. Environmental Science and Ecotechnology, 2021, 8, 100126.	13.5	10
66	Measurement of carbonaceous aerosol with different sampling configurations and frequencies. Atmospheric Measurement Techniques, 2015, 8, 2639-2648.	3.1	7
67	Uncertainties in observational data on organic aerosol: An annual perspective of sampling artifacts in Beijing, China. Environmental Pollution, 2015, 206, 113-121.	7.5	7
68	Top-Down Determination of Black Carbon Emissions from Oil Sand Facilities in Alberta, Canada Using Aircraft Measurements. Environmental Science & Technology, 2020, 54, 412-418.	10.0	7
69	Primary nature of brown carbon absorption in a frigid atmosphere with strong haze chemistry. Environmental Research, 2022, 204, 112324.	7.5	6
70	The characteristics of carbonaceous aerosol in Beijing during a season of transition. Chemosphere, 2018, 212, 1010-1019.	8.2	5
71	A new persistent luminescent composite for tracing toxic air particulate matter. Environmental Chemistry Letters, 2018, 16, 1487-1492.	16.2	5
72	Synergy of multiple drivers leading to severe winter haze pollution in a megacity in Northeast China. Atmospheric Research, 2022, 270, 106075.	4.1	5

#	Article	IF	CITATIONS
73	Air Quality in the Harbin-Changchun Metropolitan Area in Northeast China: Unique Episodes and New Trends. Toxics, 2021, 9, 357.	3.7	2
74	Overestimated role of sulfate in haze formation over Chinese megacities due to improper simulation of heterogeneous reactions. Environmental Chemistry Letters, 0, , .	16.2	2