
Yong-zheng Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3390267/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Zr(IV)-Based Metal-Organic Framework with T-Shaped Ligand: Unique Structure, High Stability, Selective Detection, and Rapid Adsorption of Cr ₂ O ₇ ^{2–} in Water. ACS Applied Materials & Interfaces, 2018, 10, 16650-16659.	8.0	219
2	Abnormal room temperature phosphorescence of purely organic boron-containing compounds: the relationship between the emissive behaviorand the molecular packing, and the potential related applications. Chemical Science, 2017, 8, 8336-8344.	7.4	176
3	Ligand Rigidification for Enhancing the Stability of Metal–Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 10283-10293.	13.7	172
4	A stable porphyrinic metal–organic framework pore-functionalized by high-density carboxylic groups for proton conduction. Journal of Materials Chemistry A, 2017, 5, 14525-14529.	10.3	121
5	Trace removal of benzene vapour using double-walled metal–dipyrazolate frameworks. Nature Materials, 2022, 21, 689-695.	27.5	109
6	Water-Stable In(III)-Based Metal–Organic Frameworks with Rod-Shaped Secondary Building Units: Single-Crystal to Single-Crystal Transformation and Selective Sorption of C ₂ H ₂ over CO ₂ and CH ₄ . Inorganic Chemistry, 2017, 56, 2188-2197.	4.0	83
7	Tuning Water Sorption in Highly Stable Zr(IV)-Metal–Organic Frameworks through Local Functionalization of Metal Clusters. ACS Applied Materials & Interfaces, 2018, 10, 27868-27874.	8.0	54
8	Constructing new metal–organic frameworks with complicated ligands from "One-Pot― <i>in situ</i> reactions. Chemical Science, 2019, 10, 3949-3955.	7.4	46
9	Functionalized Baseâ€Stable Metal–Organic Frameworks for Selective CO ₂ Adsorption and Proton Conduction. ChemPhysChem, 2017, 18, 3245-3252.	2.1	43
10	Nanocage-Based Porous Metal–Organic Frameworks Constructed from Icosahedrons and Tetrahedrons for Selective Gas Adsorption. ACS Applied Materials & Interfaces, 2019, 11, 20104-20109.	8.0	35
11	A Green-Emission Metal–Organic Framework-Based Nanoprobe for Imaging Dual Tumor Biomarkers in Living Cells. ACS Applied Materials & Interfaces, 2020, 12, 35375-35384.	8.0	32
12	Two interpenetrated metal–organic frameworks with a slim ethynyl-based ligand: designed for selective gas adsorption and structural tuning. CrystEngComm, 2018, 20, 6018-6025.	2.6	29
13	Single-Crystal Synthesis and Structures of Highly Stable Ni ₈ -Pyrazolate-Based Metal–Organic Frameworks. , 2019, 1, 20-24.		26
14	Integrating multiple adsorption sites and tortuous diffusion paths into a metal–organic framework for C ₃ H ₄ /C ₃ H ₆ separation. Journal of Materials Chemistry A, 2019, 7, 25254-25257.	10.3	26
15	Rational design of CuO/SiO2 nanocatalyst with anchor structure and hydrophilic surface for efficient hydrogenation of nitrophenol. Journal of Solid State Chemistry, 2021, 296, 121960.	2.9	24
16	Pillar-Layered Metal–Organic Frameworks Based on a Hexaprismane [Co6(μ3-OH)6] Cluster: Structural Modulation and Catalytic Performance in Aerobic Oxidation Reaction. Inorganic Chemistry, 2020, 59, 11728-11735.	4.0	17
17	Combining unsaturated metal sites and narrow pores within a Co(<scp>ii</scp>)-based MOF towards CO ₂ separation and transformation. Dalton Transactions, 2020, 49, 2058-2062.	3.3	17
18	A Baseâ€Resistant Zn ^{ll} â€Based Metal–Organic Framework: Synthesis, Structure, Postsynthetic Modification, and Gas Adsorption. ChemPlusChem, 2016, 81, 864-871.	2.8	16

#	Article	IF	CITATIONS
19	Co ₇ -Cluster-Based Metal–Organic Frameworks with Mixed Carboxylate and Pyrazolate Ligands: Construction and CO ₂ Adsorption and Fixation. Crystal Growth and Design, 2020, 20, 7972-7978.	3.0	16
20	Unique T-Shaped Ligand as a New Platform for Metal–Organic Frameworks. Crystal Growth and Design, 2019, 19, 430-436.	3.0	10
21	A three-dimensional metal–organic framework with high performance of dual cation sensing synthesized <i>via</i> single-crystal transformation. New Journal of Chemistry, 2020, 44, 11829-11834.	2.8	8
22	Constructing [Co6(μ3-OH)6]-based pillar-layered MOF with open metal sites via steric-hindrance effect on ligand for CO2 adsorption and fixation. Inorganic Chemistry Communication, 2022, 139, 109347.	3.9	4
23	Nanocage containing metal-organic framework constructed from a newly designed low symmetry tetra-pyrazole ligand. Journal of Coordination Chemistry, 2016, 69, 3242-3249.	2.2	1