
Olivier Ouellette

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/339024/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	2D matrix engineering for homogeneous quantum dot coupling in photovoltaic solids. Nature Nanotechnology, 2018, 13, 456-462.	15.6	252
2	Ultralow Self-Doping in Two-dimensional Hybrid Perovskite Single Crystals. Nano Letters, 2017, 17, 4759-4767.	4.5	251
3	Fast and Sensitive Solutionâ€Processed Visibleâ€Blind Perovskite UV Photodetectors. Advanced Materials, 2016, 28, 7264-7268.	11.1	234
4	Cascade surface modification of colloidal quantum dot inks enables efficient bulk homojunction photovoltaics. Nature Communications, 2020, 11, 103.	5.8	181
5	Engineering of CH ₃ NH ₃ PbI ₃ Perovskite Crystals by Alloying Large Organic Cations for Enhanced Thermal Stability and Transport Properties. Angewandte Chemie - International Edition, 2016, 55, 10686-10690.	7.2	152
6	Synergistic Effect of Fluorinated Passivator and Hole Transport Dopant Enables Stable Perovskite Solar Cells with an Efficiency Near 24%. Journal of the American Chemical Society, 2021, 143, 3231-3237.	6.6	152
7	Crown Ether Modulation Enables over 23% Efficient Formamidinium-Based Perovskite Solar Cells. Journal of the American Chemical Society, 2020, 142, 19980-19991.	6.6	145
8	Monolayer Perovskite Bridges Enable Strong Quantum Dot Coupling for Efficient Solar Cells. Joule, 2020, 4, 1542-1556.	11.7	143
9	Efficient hybrid colloidal quantum dot/organic solar cells mediated by near-infrared sensitizing small molecules. Nature Energy, 2019, 4, 969-976.	19.8	120
10	Machine Learning Accelerates Discovery of Optimal Colloidal Quantum Dot Synthesis. ACS Nano, 2019, 13, 11122-11128.	7.3	108
11	Colloidal quantum dot photodetectors with 10-ns response time and 80% quantum efficiency at 1,550Ânm. Matter, 2021, 4, 1042-1053.	5.0	88
12	Mixed Lead Halide Passivation of Quantum Dots. Advanced Materials, 2019, 31, e1904304.	11.1	81
13	Butylamineâ€Catalyzed Synthesis of Nanocrystal Inks Enables Efficient Infrared CQD Solar Cells. Advanced Materials, 2018, 30, e1803830.	11.1	67
14	A Chemically Orthogonal Hole Transport Layer for Efficient Colloidal Quantum Dot Solar Cells. Advanced Materials, 2020, 32, e1906199.	11.1	59
15	Activated Electronâ€Transport Layers for Infrared Quantum Dot Optoelectronics. Advanced Materials, 2018, 30, e1801720.	11.1	57
16	Multibandgap quantum dot ensembles for solar-matched infrared energy harvesting. Nature Communications, 2018, 9, 4003.	5.8	56
17	Single-step colloidal quantum dot films for infrared solar harvesting. Applied Physics Letters, 2016, 109, .	1.5	52
18	Enhanced Openâ€Circuit Voltage in Colloidal Quantum Dot Photovoltaics via Reactivityâ€Controlled Solutionâ€Phase Ligand Exchange. Advanced Materials, 2017, 29, 1703627.	11.1	49

OLIVIER OUELLETTE

#	Article	IF	CITATIONS
19	Nanostructured Back Reflectors for Efficient Colloidal Quantumâ€Dot Infrared Optoelectronics. Advanced Materials, 2019, 31, e1901745.	11.1	49
20	Micron Thick Colloidal Quantum Dot Solids. Nano Letters, 2020, 20, 5284-5291.	4.5	47
21	Nanoimprint-Transfer-Patterned Solids Enhance Light Absorption in Colloidal Quantum Dot Solar Cells. Nano Letters, 2017, 17, 2349-2353.	4.5	46
22	Solution-processed perovskite-colloidal quantum dot tandem solar cells for photon collection beyond 1000 nm. Journal of Materials Chemistry A, 2019, 7, 26020-26028.	5.2	44
23	Halide Re-Shelled Quantum Dot Inks for Infrared Photovoltaics. ACS Applied Materials & Interfaces, 2017, 9, 37536-37541.	4.0	35
24	Asymmetric double-clad fiber couplers for endoscopy. Optics Letters, 2013, 38, 4514.	1.7	34
25	Ultrahigh resolution and color gamut with scattering-reducing transmissive pixels. Nature Communications, 2019, 10, 4782.	5.8	29
26	Optical Resonance Engineering for Infrared Colloidal Quantum Dot Photovoltaics. ACS Energy Letters, 2016, 1, 852-857.	8.8	27
27	Spatial Collection in Colloidal Quantum Dot Solar Cells. Advanced Functional Materials, 2020, 30, 1908200.	7.8	24
28	Double-clad fiber coupler for partially coherent detection. Optics Express, 2015, 23, 9040.	1.7	20
29	Infrared Cavity-Enhanced Colloidal Quantum Dot Photovoltaics Employing Asymmetric Multilayer Electrodes. ACS Energy Letters, 2018, 3, 2908-2913.	8.8	20
30	Engineering of CH ₃ NH ₃ PbI ₃ Perovskite Crystals by Alloying Large Organic Cations for Enhanced Thermal Stability and Transport Properties. Angewandte Chemie, 2016, 128, 10844-10848.	1.6	18
31	Graphene Oxide Shells on Plasmonic Nanostructures Lead to High-Performance Photovoltaics: A Model Study Based on Dye-Sensitized Solar Cells. ACS Energy Letters, 2017, 2, 117-123.	8.8	17
32	Monolithic Organic/Colloidal Quantum Dot Hybrid Tandem Solar Cells via Buffer Engineering. Advanced Materials, 2020, 32, e2004657.	11.1	16
33	Ligand cleavage enables formation of 1,2-ethanedithiol capped colloidal quantum dot solids. Nanoscale, 2019, 11, 10774-10781.	2.8	14
34	Accelerated solution-phase exchanges minimize defects in colloidal quantum dot solids. Nano Energy, 2019, 63, 103876.	8.2	12
35	Analysis and Experimental Study of Magnetic-Field Amplification by a Double Coil. IEEE Transactions on Industrial Electronics, 2017, 64, 3216-3226.	5.2	8
36	Novel double clad fiber coupler for endoscopy. , 2013, , .		0

Novel double clad fiber coupler for endoscopy. , 2013, , . 36