Martin Schwentenwein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3389904/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Additive Manufacturing of Dense Alumina Ceramics. International Journal of Applied Ceramic Technology, 2015, 12, 1-7.	2.1	332
2	Stereolithography of SiOC Ceramic Microcomponents. Advanced Materials, 2016, 28, 370-376.	21.0	320
3	Toughening of photo-curable polymer networks: a review. Polymer Chemistry, 2016, 7, 257-286.	3.9	308
4	Vinyl esters: Low cytotoxicity monomers for the fabrication of biocompatible 3D scaffolds by lithography based additive manufacturing. Journal of Polymer Science Part A, 2009, 47, 6941-6954.	2.3	133
5	Fractography of zirconia-specimens made using additive manufacturing (LCM) technology. Journal of the European Ceramic Society, 2017, 37, 4331-4338.	5.7	96
6	Application of high resolution DLP stereolithography for fabrication of tricalcium phosphate scaffolds for bone regeneration. Biomedical Materials (Bristol), 2019, 14, 045018.	3.3	78
7	Complex mullite structures fabricated via digital light processing of a preceramic polysiloxane with active alumina fillers. Journal of the European Ceramic Society, 2019, 39, 1336-1343.	5.7	59
8	New technologies for ammonium dinitramide based monopropellant thrusters – The project RHEFORM. Acta Astronautica, 2018, 143, 105-117.	3.2	57
9	Lithography-based ceramic manufacture (LCM) of auxetic structures: present capabilities and challenges. Smart Materials and Structures, 2016, 25, 054015.	3.5	54
10	Digital light processing stereolithography of hydroxyapatite scaffolds with boneâ€like architecture, permeability, and mechanical properties. Journal of the American Ceramic Society, 2022, 105, 1648-1657.	3.8	54
11	Dense, Strong, and Precise Silicon Nitride-Based Ceramic Parts by Lithography-Based Ceramic Manufacturing. Applied Sciences (Switzerland), 2020, 10, 996.	2.5	49
12	Vinylcarbonates and vinylcarbamates: Biocompatible monomers for radical photopolymerization. Journal of Polymer Science Part A, 2011, 49, 650-661.	2.3	44
13	Lithography-Based Ceramic Manufacturing: A Novel Technique for Additive Manufacturing of High-Performance Ceramics. Advances in Science and Technology, 0, , .	0.2	43
14	Stabilization of tricalcium phosphate slurries against sedimentation for stereolithographic additive manufacturing and influence on the final mechanical properties. International Journal of Applied Ceramic Technology, 2017, 14, 499-506.	2.1	38
15	Biomaterials based on low cytotoxic vinyl esters for bone replacement application. Journal of Polymer Science Part A, 2011, 49, 4927-4934.	2.3	33
16	Additive manufacturing of lunar regolith structures. Open Ceramics, 2021, 5, 100058.	2.0	32
17	Transparent laser ceramics by stereolithography. Scripta Materialia, 2020, 187, 194-196.	5.2	31
18	Lithography-based additive manufacture of ceramic biodevices with design-controlled surface	3.0	23

topographies. International Journal of Advanced Manufacturing Technology, 2017, 88, 1547-1555.

MARTIN SCHWENTENWEIN

#	Article	IF	CITATIONS
19	Development of catalytic materials for decomposition of ADN-based monopropellants. Acta Astronautica, 2019, 158, 407-415.	3.2	23
20	Vat Photopolymerization Additive Manufacturing of Functionally Graded Materials: A Review. Journal of Manufacturing and Materials Processing, 2022, 6, 17.	2.2	18
21	Multiscale ceramic components from preceramic polymers by hybridization of vat polymerization-based technologies. Additive Manufacturing, 2019, 30, 100913.	3.0	16
22	Monolithic 3D labs- and organs-on-chips obtained by lithography-based ceramic manufacture. International Journal of Advanced Manufacturing Technology, 2017, 93, 3371-3381.	3.0	13
23	Additive manufacturing of aluminum nitride ceramics with high thermal conductivity via digital light processing. Open Ceramics, 2022, 9, 100215.	2.0	13
24	Stereolithography-based additive manufacturing of polymer-derived SiOC/SiC ceramic composites. Journal of the European Ceramic Society, 2022, 42, 5343-5354.	5.7	13
25	Additive manufacturing of high-strength alumina through a multi-material approach. Open Ceramics, 2021, 5, 100082.	2.0	12
26	High-reliability data processing and calculation of microstructural parameters in hydroxyapatite scaffolds produced by vat photopolymerization. Journal of the European Ceramic Society, 2022, 42, 6206-6212.	5.7	12
27	Development of monoblock TM dielectric resonator filters with additive manufacturing. IET Microwaves, Antennas and Propagation, 2017, 11, 1992-1996.	1.4	10
28	Knowledge-Driven Manufacturability Analysis for Additive Manufacturing. IEEE Open Journal of the Industrial Electronics Society, 2021, 2, 207-223.	6.8	10
29	Effect of binder system on the thermophysical properties of 3Dâ€printed zirconia ceramics. International Journal of Applied Ceramic Technology, 2022, 19, 174-180.	2.1	10
30	Ceramic Additive Manufactured Monolithic X-Shaped TM Dual-Mode Filter. IEEE Journal of Microwaves, 2022, 2, 496-506.	6.5	8
31	Comparison of HTP catalyst performance for different internal monolith structures. Acta Astronautica, 2019, 164, 106-111.	3.2	7
32	Validation of a novel 3D flow model for the optimization of construct perfusion in radial-flow packed-bed bioreactors (rPBBs) for long-bone tissue engineering. New Biotechnology, 2019, 52, 110-120.	4.4	6
33	Additive Manufacturing of Ceramic Materials: a Performance Comparison of Catalysts for Monopropellant Thrusters. , 2017, , .		3
34	The RHEFORM Project - Developments for ADN-Based Liquid Monopropellant Thrusters. , 2017, , .		3
35	Manufacturability Analysis for Additive Manufacturing. , 2019, , .		2
36	Lithography-based additive manufacturing of porosity graded alumina. Additive Manufacturing Letters, 2022, 3, 100060.	2.1	2

#	Article	IF	CITATIONS
37	Simulation-Based Investigation of the Integration Capabilities of 3D-Printed Ceramic Heat Exchange Structures for Thermoelectric Modules. , 2022, , .		0