Kai-Xue Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3389898/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Design of a LiFePO ₄ /Carbon Nanocomposite With a Core–Shell Structure and Its Synthesis by an Inâ€Situ Polymerization Restriction Method. Angewandte Chemie - International Edition, 2008, 47, 7461-7465.	7.2	816
2	Isolated Diatomic Niâ€Fe Metal–Nitrogen Sites for Synergistic Electroreduction of CO ₂ . Angewandte Chemie - International Edition, 2019, 58, 6972-6976.	7.2	707
3	Surface and Interface Engineering of Electrode Materials for Lithiumâ€lon Batteries. Advanced Materials, 2015, 27, 527-545.	11.1	426
4	Extended Structures and Physicochemical Properties of Uranyl–Organic Compounds. Accounts of Chemical Research, 2011, 44, 531-540.	7.6	375
5	Synthesis and electrochemical performance of nano-sized Li4Ti5O12 with double surface modification of Ti(III) and carbon. Journal of Materials Chemistry, 2009, 19, 6789.	6.7	248
6	Surface Binding of Polypyrrole on Porous Silicon Hollow Nanospheres for Liâ€lon Battery Anodes with High Structure Stability. Advanced Materials, 2014, 26, 6145-6150.	11.1	244
7	Mesoporous Titania Nanotubes: Their Preparation and Application as Electrode Materials for Rechargeable Lithium Batteries. Advanced Materials, 2007, 19, 3016-3020.	11.1	240
8	Carbon-Coated V ₂ O ₅ Nanocrystals as High Performance Cathode Material for Lithium Ion Batteries. Chemistry of Materials, 2011, 23, 5290-5292.	3.2	230
9	Hierarchical porous carbon derived from rice straw for lithium ion batteries with high-rate performance. Electrochemistry Communications, 2009, 11, 130-133.	2.3	218
10	Highly Efficient Dehydrogenation of Formic Acid over a Palladiumâ€Nanoparticleâ€Based Mott–Schottky Photocatalyst. Angewandte Chemie - International Edition, 2013, 52, 11822-11825.	7.2	210
11	Mesoporous Carbon Nanofibers for Supercapacitor Application. Journal of Physical Chemistry C, 2009, 113, 1093-1097.	1.5	196
12	Montmorillonite-Supported Ag/TiO ₂ Nanoparticles: An Efficient Visible-Light Bacteria Photodegradation Material. ACS Applied Materials & Interfaces, 2010, 2, 544-550.	4.0	189
13	Efficient Sunlightâ€Ðriven Dehydrogenative Coupling of Methane to Ethane over a Zn ⁺ â€Modified Zeolite. Angewandte Chemie - International Edition, 2011, 50, 8299-8303.	7.2	187
14	MoO ₂ /Mo ₂ C Heteronanotubes Function as Highâ€Performance Liâ€Ion Battery Electrode. Advanced Functional Materials, 2014, 24, 3399-3404.	7.8	185
15	Hierarchical Bi2O2CO3 microspheres with improved visible-light-driven photocatalytic activity. CrystEngComm, 2011, 13, 4010.	1.3	179
16	High stability and superior rate capability of three-dimensional hierarchical SnS2 microspheres as anode material in lithium ion batteries. Journal of Power Sources, 2011, 196, 3650-3654.	4.0	175
17	Co3O4 nanorods/graphene nanosheets nanocomposites for lithium ion batteries with improved reversible capacity and cycle stability. Journal of Power Sources, 2012, 202, 230-235.	4.0	153
18	Facile synthesis of NaV6O15 nanorods and its electrochemical behavior as cathode material in rechargeable lithium batteries. Journal of Materials Chemistry, 2009, 19, 7885.	6.7	136

#	Article	IF	CITATIONS
19	Multifunctional Au–Co@CN Nanocatalyst for Highly Efficient Hydrolysis of Ammonia Borane. ACS Catalysis, 2015, 5, 388-392.	5.5	135
20	Strategies to succeed in improving the lithium-ion storage properties of silicon nanomaterials. Journal of Materials Chemistry A, 2016, 4, 32-50.	5.2	130
21	Design and synthesis of a novel nanothorn VO2(B) hollow microsphere and their application in lithium-ion batteries. Journal of Materials Chemistry, 2009, 19, 2835.	6.7	125
22	Isolated copper–tin atomic interfaces tuning electrocatalytic CO2 conversion. Nature Communications, 2021, 12, 1449.	5.8	119
23	Toward Hydrogenâ€Free and Dendriteâ€Free Aqueous Zinc Batteries: Formation of Zincophilic Protective Layer on Zn Anodes. Advanced Science, 2022, 9, e2104866.	5.6	118
24	Synthesis and electrochemical properties of single-crystalline LiV3O8 nanorods as cathode materials for rechargeable lithium batteries. Journal of Power Sources, 2009, 192, 668-673.	4.0	110
25	Highly Reversible Zinc Anode Enabled by a Cation-Exchange Coating with Zn-Ion Selective Channels. ACS Nano, 2022, 16, 6906-6915.	7.3	100
26	3D-hierarchical SnS ₂ micro/nano-structures: controlled synthesis, formation mechanism and lithium ion storage performances. CrystEngComm, 2012, 14, 1364-1375.	1.3	98
27	Cobalt-Doped MnO ₂ Hierarchical Yolk–Shell Spheres with Improved Supercapacitive Performance. Journal of Physical Chemistry C, 2015, 119, 8465-8471.	1.5	96
28	Regeneration of Metal Sulfides in the Delithiation Process: The Key to Cyclic Stability. Advanced Energy Materials, 2016, 6, 1601056.	10.2	93
29	Nitrogen-doped graphene microtubes with opened inner voids: Highly efficient metal-free electrocatalysts for alkaline hydrogen evolution reaction. Nano Research, 2016, 9, 2606-2615.	5.8	92
30	Sol–gel preparation of efficient red phosphor Mg2TiO4:Mn4+ and XAFS investigation on the substitution of Mn4+ for Ti4+. Journal of Materials Chemistry C, 2013, 1, 4327.	2.7	90
31	A facile one-pot reduction method for the preparation of a SnO/SnO ₂ /GNS composite for high performance lithium ion batteries. Dalton Transactions, 2014, 43, 3137-3143.	1.6	89
32	Nitrogen-doped carbon nets with micro/mesoporous structures as electrodes for high-performance supercapacitors. Journal of Materials Chemistry A, 2016, 4, 16698-16705.	5.2	88
33	Synergistic Effect on the Photoactivation of the Methane CH Bond over Ga ³⁺ â€Modified ETSâ€10. Angewandte Chemie - International Edition, 2012, 51, 4702-4706.	7.2	86
34	Strategies toward Highâ€Performance Cathode Materials for Lithium–Oxygen Batteries. Small, 2018, 14, e1800078.	5.2	86
35	Boosting the Zn-ion transfer kinetics to stabilize the Zn metal interface for high-performance rechargeable Zn-ion batteries. Journal of Materials Chemistry A, 2021, 9, 16814-16823.	5.2	86
36	Lithiation mechanism of hierarchical porous MoO ₂ nanotubes fabricated through one-step carbothermal reduction. Journal of Materials Chemistry A, 2014, 2, 80-86.	5.2	84

#	Article	IF	CITATIONS
37	A Composite of Carbonâ€Wrapped Mo ₂ C Nanoparticle and Carbon Nanotube Formed Directly on Ni Foam as a Highâ€Performance Binderâ€Free Cathode for Liâ€O ₂ Batteries. Advanced Functional Materials, 2016, 26, 8514-8520.	7.8	83
38	Hierarchical carbon nanopapers coupled with ultrathin MoS2 nanosheets: Highly efficient large-area electrodes for hydrogen evolution. Nano Energy, 2015, 15, 335-342.	8.2	81
39	Multistaged discharge constructing heterostructure with enhanced solid-solution behavior for long-life lithium-oxygen batteries. Nature Communications, 2019, 10, 5810.	5.8	80
40	Recent progress on germanium-based anodes for lithium ion batteries: Efficient lithiation strategies and mechanisms. Energy Storage Materials, 2020, 30, 146-169.	9.5	80
41	Neuron-Inspired Design of High-Performance Electrode Materials for Sodium-Ion Batteries. ACS Nano, 2018, 12, 11503-11510.	7.3	79
42	3D-hierarchical NiO–graphene nanosheet composites as anodes for lithium ion batteries with improved reversible capacity and cycle stability. RSC Advances, 2012, 2, 3410.	1.7	76
43	Direct Fabrication of Well-Aligned Free-Standing Mesoporous Carbon Nanofiber Arrays on Silicon Substrates. Journal of the American Chemical Society, 2007, 129, 13388-13389.	6.6	75
44	CoFe2O4-Graphene Nanocomposites Synthesized through An Ultrasonic Method with Enhanced Performances as Anode Materials for Li-ion Batteries. Nano-Micro Letters, 2014, 6, 307-315.	14.4	75
45	A graphene-wrapped silver–porous silicon composite with enhanced electrochemical performance for lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 13648.	5.2	74
46	Carbonate decomposition: Low-overpotential Li-CO2 battery based on interlayer-confined monodisperse catalyst. Energy Storage Materials, 2018, 15, 291-298.	9.5	73
47	Towards real Li-air batteries: A binder-free cathode with high electrochemical performance in CO2 and O2. Energy Storage Materials, 2017, 7, 209-215.	9.5	66
48	Freeâ€Standing Air Cathodes Based on 3D Hierarchically Porous Carbon Membranes: Kinetic Overpotential of Continuous Macropores in Liâ€O ₂ Batteries. Angewandte Chemie - International Edition, 2018, 57, 6825-6829.	7.2	65
49	Isolated Diatomic Niâ€Fe Metal–Nitrogen Sites for Synergistic Electroreduction of CO ₂ . Angewandte Chemie, 2019, 131, 7046-7050.	1.6	65
50	Electrocatalyst design for aprotic Li–CO ₂ batteries. Energy and Environmental Science, 2020, 13, 4717-4737.	15.6	65
51	Lowâ€Overpotential Li–O ₂ Batteries Based on TFSI Intercalated Co–Ti Layered Double Oxides. Advanced Functional Materials, 2016, 26, 1365-1374.	7.8	64
52	Li ₄ Ti ₅ O ₁₂ /TiO ₂ Hollow Spheres Composed Nanoflakes with Preferentially Exposed Li ₄ Ti ₅ O ₁₂ (011) Facets for High-Rate Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2014, 6, 19791-19796.	4.0	63
53	Uniform hierarchical MoO2/carbon spheres with high cycling performance for lithium ion batteries. Journal of Materials Chemistry A, 2013, 1, 12038.	5.2	62
54	Carbon nanocages with nanographene shell for high-rate lithium ion batteries. Journal of Materials Chemistry, 2010, 20, 9748.	6.7	60

#	Article	IF	CITATIONS
55	Nitrogen-doped carbon nanotube sponge with embedded Fe/Fe ₃ C nanoparticles as binder-free cathodes for high capacity lithium–sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 17473-17480.	5.2	60
56	In situ catalytic growth of large-area multilayered graphene/MoS2 heterostructures. Scientific Reports, 2014, 4, 4673.	1.6	58
57	Synthesis, structure characterization and photocatalytic properties of two new uranyl naphthalene-dicarboxylate coordination polymer compounds. Inorganic Chemistry Communication, 2010, 13, 1542-1547.	1.8	55
58	Preparation of Mesoporous Titania Thin Films with Remarkably High Thermal Stability. Chemistry of Materials, 2005, 17, 1269-1271.	3.2	53
59	Enhanced Electrochemical Performance of Aprotic Liâ€CO ₂ Batteries with a Rutheniumâ€Complexâ€Based Mobile Catalyst. Angewandte Chemie - International Edition, 2021, 60, 16404-16408.	7.2	53
60	Nonâ€Conjugated Dicarboxylate Anode Materials for Electrochemical Cells. Angewandte Chemie - International Edition, 2018, 57, 8865-8870.	7.2	52
61	Mesoporous titania rods as an anode material for high performance lithium-ion batteries. Journal of Power Sources, 2012, 214, 298-302.	4.0	50
62	Template-directed metal oxides for electrochemical energy storage. Energy Storage Materials, 2016, 3, 1-17.	9.5	50
63	Supercritical Fluid Processing of Thermally Stable Mesoporous Titania Thin Films with Enhanced Photocatalytic Activity. Chemistry of Materials, 2005, 17, 4825-4831.	3.2	49
64	Hierarchical Li4Ti5O12/TiO2 composite tubes with regular structural imperfection for lithium ion storage. Scientific Reports, 2013, 3, 3490.	1.6	49
65	Light-induced formation of porous TiO2 with superior electron-storing capacity. Chemical Communications, 2010, 46, 2112.	2.2	46
66	Preparation and Tunable Photoluminescence of Carbogenic Nanoparticles Confined in a Microporous Magnesium-Aluminophosphate. Inorganic Chemistry, 2010, 49, 5859-5867.	1.9	45
67	Toward Lower Overpotential through Improved Electron Transport Property: Hierarchically Porous CoN Nanorods Prepared by Nitridation for Lithium–Oxygen Batteries. Nano Letters, 2016, 16, 5902-5908.	4.5	43
68	Preparation of MCM-48 materials with enhanced hydrothermal stability. Journal of Materials Chemistry, 2006, 16, 4051.	6.7	42
69	Synthesis and characterisation of ordered arrays of mesoporous carbon nanofibres. Journal of Materials Chemistry, 2009, 19, 1331.	6.7	42
70	Photochemically Engineering the Metal–Semiconductor Interface for Roomâ€Temperature Transfer Hydrogenation of Nitroarenes with Formic Acid. Chemistry - A European Journal, 2014, 20, 16732-16737.	1.7	42
71	Incorporation of heterostructured Sn/SnO nanoparticles in crumpled nitrogen-doped graphene nanosheets for application as anodes in lithium-ion batteries. Chemical Communications, 2014, 50, 9961-9964.	2.2	40
72	General transfer hydrogenation by activating ammonia-borane over cobalt nanoparticles. RSC Advances, 2015, 5, 102736-102740.	1.7	38

#	Article	IF	CITATIONS
73	Graphene-nanosheet-wrapped LiV3O8 nanocomposites as high performance cathode materials for rechargeable lithium-ion batteries. Journal of Power Sources, 2016, 307, 426-434.	4.0	38
74	Towards Rational Synthesis of Microporous Aluminophosphate AlPO4-21 by Hydrothermal Combinatorial Approach. Topics in Catalysis, 2005, 35, 3-8.	1.3	37
75	Assembly of one-dimensional AlP2O83â^'chains into three-dimensional MAlP2O8·C2N2H9frameworks through transition metal cations (M = Ni2+, Co2+and Fe2+). Dalton Transactions, 2003, , 99-103.	1.6	36
76	Hierarchical porous carbon spheres as an anode material for lithium ion batteries. RSC Advances, 2013, 3, 10823.	1.7	36
77	Germanium nanoparticles supported by 3D ordered macroporous nickel frameworks as high-performance free-standing anodes for Li-ion batteries. Chemical Engineering Journal, 2018, 354, 616-622.	6.6	36
78	Investigation on the Chain-to-Chain and Chain-to-Open-Framework Transformations of Two One-Dimensional Aluminophosphate Chains. Inorganic Chemistry, 2003, 42, 4597-4602.	1.9	35
79	Synthesis of Ni-doped NiO/RGONS nanocomposites with enhanced rate capabilities as anode materials for Li ion batteries. CrystEngComm, 2013, 15, 6663.	1.3	35
80	Co ₃ O ₄ -based binder-free cathodes for lithium–oxygen batteries with improved cycling stability. Dalton Transactions, 2015, 44, 8678-8684.	1.6	35
81	Free-standing hybrid porous membranes integrated with transition metal nitride and carbide nanoparticles for high-performance lithium-sulfur batteries. Chemical Engineering Journal, 2019, 378, 122208.	6.6	35
82	Converting waste paper to multifunctional graphene-decorated carbon paper: from trash to treasure. Journal of Materials Chemistry A, 2015, 3, 13926-13932.	5.2	34
83	Well-ordered mesoporous Fe ₂ O ₃ /C composites as high performance anode materials for sodium-ion batteries. Dalton Transactions, 2017, 46, 5025-5032.	1.6	34
84	Rational Synthesis of Microporous Aluminophosphates with an Inorganic Open Framework Analogous to Al4P5O20H·C6H18N2. Chemistry of Materials, 2000, 12, 3783-3787.	3.2	33
85	Hydroquinone Resin Induced Carbon Nanotubes on Ni Foam As Binder-Free Cathode for Li–O ₂ Batteries. ACS Applied Materials & Interfaces, 2016, 8, 3868-3873.	4.0	33
86	Supercritical fluid processing of mesoporous crystalline TiO2 thin films for highly efficient dye-sensitized solar cells. Journal of Materials Chemistry, 2007, 17, 3888.	6.7	32
87	An anionic framework aluminophosphate (CH2)6N4H3·H2O [Al11P12O48] and computer simulation of the template positions. Microporous and Mesoporous Materials, 2001, 50, 151-158.	2.2	30
88	Amorphous silicon with high specific surface area prepared by a sodiothermic reduction method for supercapacitors. Chemical Communications, 2013, 49, 5007.	2.2	29
89	The crystallinity effect of mesocrystalline BaZrO ₃ hollow nanospheres on charge separation for photocatalysis. Chemical Communications, 2014, 50, 3021-3023.	2.2	29
90	A new layered aluminophosphate [C4H12N2][Al2P2O8(OH)2] templated by piperazine. Journal of Materials Chemistry, 2001, 11, 1898-1902.	6.7	28

#	Article	IF	CITATIONS
91	Controlled synthesis of magnetic Pd/Fe3O4 spheres via an ethylenediamine-assisted route. Dalton Transactions, 2012, 41, 3204.	1.6	28
92	Boosting Potassium Storage Capacity Based on Stressâ€Induced Sizeâ€Dependent Solidâ€Solution Behavior. Advanced Energy Materials, 2018, 8, 1802175.	10.2	28
93	Surface engineering donor and acceptor sites with enhanced charge transport for low-overpotential lithium–oxygen batteries. Energy Storage Materials, 2020, 25, 52-61.	9.5	28
94	Boosting the electrochemical performance of Li–O2 batteries with DPPH redox mediator and graphene-luteolin-protected lithium anode. Energy Storage Materials, 2020, 31, 373-381.	9.5	28
95	Enhanced oxygen electroreduction over nitrogen-free carbon nanotube-supported CuFeO ₂ nanoparticles. Journal of Materials Chemistry A, 2018, 6, 4331-4336.	5.2	27
96	Synthesis and characterization of a new three-dimensional aluminophosphate [Al11P12O48][C4H12N2][C4H11N2] with an Al/P ratio of 11â€â^¶â€12. Dalton Transactions RSC, 2001, , 18	30 9 -1812.	26
97	Synthesis of SnO2 hollow nanostructures with controlled interior structures through a template-assisted hydrothermal route. Dalton Transactions, 2011, 40, 8517.	1.6	25
98	Thiophene Derivative as a High Electrochemical Active Anode Material for Sodium-Ion Batteries: The Effect of Backbone Sulfur. Chemistry of Materials, 2018, 30, 8426-8430.	3.2	25
99	Effect of Surface Cations on Photoelectric Conversion Property of Nanosized Zirconia. Journal of Physical Chemistry C, 2009, 113, 9114-9120.	1.5	24
100	Cerium vanadate nanoparticles as a new anode material for lithium ion batteries. RSC Advances, 2013, 3, 7403.	1.7	24
101	Free‣tanding Air Cathodes Based on 3D Hierarchically Porous Carbon Membranes: Kinetic Overpotential of Continuous Macropores in Liâ€O ₂ Batteries. Angewandte Chemie, 2018, 130, 6941-6945.	1.6	24
102	Free-standing N,Co-codoped TiO ₂ nanoparticles for LiO ₂ -based Li–O ₂ batteries. Journal of Materials Chemistry A, 2019, 7, 23046-23054.	5.2	24
103	Decomposition of CO2 to carbon and oxygen under mild conditions over a zinc-modified zeolite. Chemical Communications, 2012, 48, 2325.	2.2	23
104	Sodium phthalate as an anode material for sodium ion batteries: effect of the bridging carbonyl group. Journal of Materials Chemistry A, 2020, 8, 8469-8475.	5.2	23
105	Dandelion-clock-inspired preparation of core-shell TiO2@MoS2 composites for high performance sodium ion storage. Journal of Alloys and Compounds, 2020, 815, 152386.	2.8	22
106	Synthesis of porous Al ₂ O ₃ â€PVDF composite separators and their application in lithiumâ€ion batteries. Journal of Applied Polymer Science, 2013, 130, 2886-2890.	1.3	21
107	Core–shell anatase anode materials for sodium-ion batteries: the impact of oxygen vacancies and nitrogen-doped carbon coating. Nanoscale, 2019, 11, 17860-17868.	2.8	21
108	MoS2 nanoflakes integrated in a 3D carbon framework for high-performance sodium-ion batteries. Journal of Alloys and Compounds, 2019, 797, 1126-1132.	2.8	21

#	Article	IF	CITATIONS
109	3D ordered macroporous MoO ₂ attached on carbonized cloth for high performance free-standing binder-free lithium–sulfur electrodes. Journal of Materials Chemistry A, 2019, 7, 24524-24531.	5.2	21
110	Dendrite-free lithium anode achieved under lean-electrolyte condition through the modification of separators with F-functionalized Ti3C2 nanosheets. Journal of Energy Chemistry, 2022, 66, 366-373.	7.1	21
111	Thermally stable nanocrystallised mesoporous zirconia thin films. Microporous and Mesoporous Materials, 2009, 117, 161-164.	2.2	20
112	Synthesis and characterization of a new microporous aluminophosphate [Al2P2O8][OCH2CH2NH3] with an open-framework analogous to AlPO4-D. Microporous and Mesoporous Materials, 2000, 39, 281-289.	2.2	19
113	Light-Driven Preparation, Microstructure, and Visible-Light Photocatalytic Property of Porous Carbon-Doped TiO ₂ . International Journal of Photoenergy, 2012, 2012, 1-9.	1.4	19
114	Magnetite modified graphene nanosheets with improved rate performance and cyclic stability for Li ion battery anodes. RSC Advances, 2012, 2, 4397.	1.7	18
115	Bio-inspired noble metal-free reduction of nitroarenes using NiS _{2+x} /g-C ₃ N ₄ . RSC Advances, 2014, 4, 60873-60877.	1.7	18
116	Single-site photocatalysts with a porous structure. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 468, 2099-2112.	1.0	16
117	Nonâ€Conjugated Dicarboxylate Anode Materials for Electrochemical Cells. Angewandte Chemie, 2018, 130, 9003-9008.	1.6	15
118	Synergistic effect of BrÃ,nsted acid and platinum on purification of automobile exhaust gases. Scientific Reports, 2013, 3, 2349.	1.6	14
119	Catalysts for Liâ^'CO ₂ Batteries: From Heterogeneous to Homogeneous. ChemNanoMat, 2022, 8, .	1.5	14
120	A Supercriticalâ€Fluid Method for Growing Carbon Nanotubes. Advanced Materials, 2007, 19, 3043-3046.	11.1	13
121	In situ growth of ultrafine tin oxide nanocrystals embedded in graphitized carbon nanosheets for use in high-performance lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 6960-6965.	5.2	13
122	Uric Acid as an Electrochemically Active Compound for Sodium-Ion Batteries: Stepwise Na ⁺ -Storage Mechanisms of ï€-Conjugation and Stabilized Carbon Anion. ACS Applied Materials & Interfaces, 2017, 9, 33934-33940.	4.0	13
123	A Simulation Study on the Topotactic Transformations from Aluminophosphate AlPO4-21 to AlPO4-25. Inorganic Chemistry, 2001, 40, 5812-5817.	1.9	12
124	Superposed Redox Chemistry of Fused Carbon Rings in Cyclooctatetraene-Based Organic Molecules for High-Voltage and High-Capacity Cathodes. ACS Applied Materials & Interfaces, 2018, 10, 2496-2503.	4.0	12
125	Cu2SnSe3/CNTs Composite as a Promising Anode Material for Sodium-ion Batteries. Chemical Research in Chinese Universities, 2020, 36, 91-96.	1.3	12
126	Towards High-performance Lithium-Sulfur Batteries: the Modification of Polypropylene Separator by 3D Porous Carbon Structure Embedded with Fe3C/Fe Nanoparticles. Chemical Research in Chinese Universities, 2022, 38, 147-154.	1.3	12

#	Article	IF	CITATIONS
127	Rubber-based carbon electrode materials derived from dumped tires for efficient sodium-ion storage. Dalton Transactions, 2018, 47, 4885-4892.	1.6	11
128	Elucidation of the chemical environment for zinc species in an electron-rich zinc-incorporated zeolite. Journal of Solid State Chemistry, 2013, 202, 111-115.	1.4	10
129	Phosphazene-derived stable and robust artificial SEI for protecting lithium anodes of Li–O ₂ batteries. Chemical Communications, 2020, 56, 12566-12569.	2.2	10
130	Cooperative Effect of Multiple Active Sites and Hierarchical Chemical Bonds in Metal–Organic Compounds for Improving Cathode Performance. ACS Energy Letters, 2020, 5, 477-485.	8.8	10
131	Thiophene derivatives as electrode materials for high-performance sodium-ion batteries. Journal of Materials Chemistry A, 2021, 9, 11530-11536.	5.2	10
132	Carbon nanocolumn arrays prepared by pulsed laser deposition for lithium ion batteries. Journal of Power Sources, 2012, 203, 140-144.	4.0	9
133	Distinct effect of hierarchical structure on performance of anatase as an anode material for lithium-ion batteries. RSC Advances, 2013, 3, 26052.	1.7	8
134	Trapping oxygen in hierarchically porous carbon nano-nets: graphitic nitrogen dopants boost the electrocatalytic activity. RSC Advances, 2016, 6, 56765-56771.	1.7	8
135	Construction of Large Non‣ocalized Ï€â€Electron System for Enhanced Sodiumâ€ion Storage. Small, 2022, 18, e2105825.	5.2	7
136	Design of Functional Carbon Composite Materials for Energy Conversion and Storage. Chemical Research in Chinese Universities, 2022, 38, 677-687.	1.3	7
137	Inorganic–organic hybrid material containing β-cage: {[H2(en)]Co2(ox)(V4O12)}n. Inorganic Chemistry Communication, 2003, 6, 370-373.	1.8	6
138	Supramolecular nano-assemblies with tailorable surfaces: recyclable hard templates for engineering hollow nanocatalysts. Science China Materials, 2014, 57, 7-12.	3.5	6
139	Li3V2(PO4)3 particles embedded in porous N-doped carbon as high-rate and long-life cathode material for Li-ion batteries. RSC Advances, 2015, 5, 78209-78214.	1.7	6
140	Towards high performance lithium-oxygen batteries: Co3O4-NiO heterostructure induced preferential growth of ultrathin Li2O2 film. Journal of Alloys and Compounds, 2021, 863, 158073.	2.8	6
141	Rational Design of Zirconiumâ€doped Titania Photocatalysts with Synergistic BrÃ,nsted Acidity and Photoactivity. ChemSusChem, 2016, 9, 2759-2764.	3.6	4
142	Top-down fabrication of hierarchical nanocubes on nanosheets composite for high-rate lithium storage. Dalton Transactions, 2018, 47, 16155-16163.	1.6	4
143	Enhanced Electrochemical Performance of Aprotic Li O ₂ Batteries with a Ruthenium omplexâ€Based Mobile Catalyst. Angewandte Chemie, 2021, 133, 16540-16544.	1.6	4
144	The application of supercritical fluids in the preparation and processing of mesoporous materials. Studies in Surface Science and Catalysis, 2007, , 1796-1803.	1.5	2

#	Article	IF	CITATIONS
145	Self-Oriented Single Crystalline Silicon Nanorod Arrays through a Chemical Vapor Reaction Route. Journal of Physical Chemistry C, 2010, 114, 2471-2475.	1.5	2
146	Impact of photogenerated charge behaviors on luminescence of Eu3+-incorporated microporous titanosilicate ETS-10. Science China Chemistry, 2013, 56, 428-434.	4.2	2
147	Back Cover: Efficient Sunlight-Driven Dehydrogenative Coupling of Methane to Ethane over a Zn+-Modified Zeolite (Angew. Chem. Int. Ed. 36/2011). Angewandte Chemie - International Edition, 2011, 50, n/a-n/a.	7.2	Ο
148	Hedgehog-like polycrystalline Si as anode material for high performance Li-ion battery. RSC Advances, 2014, 4, 57083-57086.	1.7	0
149	Progress on the Photoanode for Dye-Sensitized Solar Cells. , 2012, , 513-564.		0