List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3389734/publications.pdf Version: 2024-02-01

PORIN H A PAS

#	Article	IF	CITATIONS
1	Design of robust superhydrophobic surfaces. Nature, 2020, 582, 55-59.	13.7	1,124
2	Mechanically Durable Superhydrophobic Surfaces. Advanced Materials, 2011, 23, 673-678.	11.1	920
3	Fluorescent silver nanoclusters. Nanoscale, 2011, 3, 1963.	2.8	776
4	Hydrophobic Nanocellulose Aerogels as Floating, Sustainable, Reusable, and Recyclable Oil Absorbents. ACS Applied Materials & Interfaces, 2011, 3, 1813-1816.	4.0	741
5	Moving superhydrophobic surfaces toward real-world applications. Science, 2016, 352, 142-143.	6.0	609
6	Surface-wetting characterization using contact-angle measurements. Nature Protocols, 2018, 13, 1521-1538.	5.5	474
7	Switchable Static and Dynamic Self-Assembly of Magnetic Droplets on Superhydrophobic Surfaces. Science, 2013, 341, 253-257.	6.0	388
8	Color Tunability and Electrochemiluminescence of Silver Nanoclusters. Angewandte Chemie - International Edition, 2009, 48, 2122-2125.	7.2	369
9	Inorganic Hollow Nanotube Aerogels by Atomic Layer Deposition onto Native Nanocellulose Templates. ACS Nano, 2011, 5, 1967-1974.	7.3	292
10	Superhydrophobic and Superoleophobic Nanocellulose Aerogel Membranes as Bioinspired Cargo Carriers on Water and Oil. Langmuir, 2011, 27, 1930-1934.	1.6	286
11	Droplet and Fluid Gating by Biomimetic Janus Membranes. Advanced Functional Materials, 2014, 24, 6023-6028.	7.8	261
12	Reversible switching between superhydrophobic states on a hierarchically structured surface. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10210-10213.	3.3	247
13	Modifying Native Nanocellulose Aerogels with Carbon Nanotubes for Mechanoresponsive Conductivity and Pressure Sensing. Advanced Materials, 2013, 25, 2428-2432.	11.1	246
14	Antifouling membranes for oily wastewater treatment: Interplay between wetting and membrane fouling. Current Opinion in Colloid and Interface Science, 2018, 36, 90-109.	3.4	246
15	Photoswitchable Superabsorbency Based on Nanocellulose Aerogels. Advanced Functional Materials, 2011, 21, 510-517.	7.8	240
16	Superhydrophobic Tracks for Lowâ€Friction, Guided Transport of Water Droplets. Advanced Materials, 2011, 23, 2911-2914.	11.1	201
17	Preservation of Superhydrophobic and Superoleophobic Properties upon Wear Damage. ACS Applied Materials & Interfaces, 2013, 5, 485-488.	4.0	181
18	Unusual Dual Superlyophobic Surfaces in Oil–Water Systems: The Design Principles. Advanced Materials, 2016, 28, 10652-10658.	11.1	154

#	Article	IF	CITATIONS
19	Organic Solvent-Free Fabrication of Durable and Multifunctional Superhydrophobic Paper from Waterborne Fluorinated Cellulose Nanofiber Building Blocks. ACS Nano, 2017, 11, 11091-11099.	7.3	154
20	Superhydrophobic Bloodâ€Repellent Surfaces. Advanced Materials, 2018, 30, e1705104.	11.1	146
21	Reliable Measurement of the Receding Contact Angle. Langmuir, 2013, 29, 3858-3863.	1.6	131
22	Hollow Inorganic Nanospheres and Nanotubes with Tunable Wall Thicknesses by Atomic Layer Deposition on Self-Assembled Polymeric Templates. Advanced Materials, 2007, 19, 102-106.	11.1	126
23	Functionalization of Nanofibrillated Cellulose with Silver Nanoclusters: Fluorescence and Antibacterial Activity. Macromolecular Bioscience, 2011, 11, 1185-1191.	2.1	121
24	Polymerâ^'Dye Complexes:Â A Facile Method for High Doping Level and Aggregation Control of Dye Molecules. Chemistry of Materials, 2005, 17, 5798-5802.	3.2	114
25	Langmuir–Blodgett deposition and optical diffraction of two-dimensional opal. Journal of Materials Chemistry, 2001, 11, 3333-3336.	6.7	111
26	Ultrathin hybrid films of clay minerals. Physical Chemistry Chemical Physics, 2007, 9, 918-932.	1.3	108
27	Oil droplet self-transportation on oleophobic surfaces. Science Advances, 2016, 2, e1600148.	4.7	106
28	Superoleophobic Slippery Lubricantâ€Infused Surfaces: Combining Two Extremes in the Same Surface. Advanced Materials, 2018, 30, e1803890.	11.1	106
29	Chiral Plasmonics Using Twisting along Cellulose Nanocrystals as a Template for Gold Nanoparticles. Advanced Materials, 2016, 28, 5262-5267.	11.1	105
30	Sensitive Humidityâ€Driven Reversible and Bidirectional Bending of Nanocellulose Thin Films as Bioâ€Inspired Actuation. Advanced Materials Interfaces, 2015, 2, 1500080.	1.9	104
31	Control of Self-Assembly by Charge-Transfer Complexation between C60Fullerene and Electron Donating Units of Block Copolymers. Macromolecules, 2006, 39, 7648-7653.	2.2	98
32	Blue, green and red emissive silver nanoclusters formed in organic solvents. Nanoscale, 2012, 4, 4434.	2.8	88
33	A Facile Template-Free Approach to Magnetodriven, Multifunctional Artificial Cilia. ACS Applied Materials & Interfaces, 2010, 2, 2226-2230.	4.0	87
34	3D Printing of Superhydrophobic Objects with Bulk Nanostructure. Advanced Materials, 2021, 33, e2106068.	11.1	84
35	Free-decay and resonant methods for investigating the fundamental limit of superhydrophobicity. Nature Communications, 2013, 4, 2398.	5.8	79
36	Nature–Inspired self–cleaning surfaces: Mechanisms, modelling, and manufacturing. Chemical Engineering Research and Design, 2020, 155, 48-65.	2.7	79

#	Article	IF	CITATIONS
37	Mapping microscale wetting variations on biological and synthetic water-repellent surfaces. Nature Communications, 2017, 8, 1798.	5.8	77
38	Vapour-driven Marangoni propulsion: continuous, prolonged and tunable motion. Chemical Science, 2012, 3, 2526.	3.7	76
39	Improving surface-wetting characterization. Science, 2019, 363, 1147-1148.	6.0	76
40	Superhydrophobic Paper from Nanostructured Fluorinated Cellulose Esters. ACS Applied Materials & Interfaces, 2018, 10, 11280-11288.	4.0	75
41	Cooperative colloidal self-assembly of metal-protein superlattice wires. Nature Communications, 2017, 8, 671.	5.8	73
42	Wetting of ferrofluids: Phenomena and control. Current Opinion in Colloid and Interface Science, 2018, 36, 118-129.	3.4	70
43	Simple and Efficient Separation of Atomically Precise Noble Metal Clusters. Analytical Chemistry, 2014, 86, 12185-12190.	3.2	69
44	Uncertainties in contact angle goniometry. Soft Matter, 2019, 15, 7089-7096.	1.2	69
45	Rebounding Dropletâ€Droplet Collisions on Superhydrophobic Surfaces: from the Phenomenon to Droplet Logic. Advanced Materials, 2012, 24, 5738-5743.	11.1	67
46	Review Article: Recommended reading list of early publications on atomic layer deposition—Outcome of the "Virtual Project on the History of ALDâ€: Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, .	0.9	65
47	Polarized Infrared Study of Hybrid Langmuirâ^'Blodgett Monolayers Containing Clay Mineral Nanoparticles. Langmuir, 2003, 19, 4295-4302.	1.6	60
48	Functionalized porous microparticles of nanofibrillated cellulose for biomimetic hierarchically structured superhydrophobic surfaces. RSC Advances, 2012, 2, 2882.	1.7	60
49	Direct Laser Writing of Photostable Fluorescent Silver Nanoclusters in Polymer Films. ACS Nano, 2014, 8, 11165-11171.	7.3	60
50	Water droplet friction and rolling dynamics on superhydrophobic surfaces. Communications Materials, 2020, 1, .	2.9	58
51	Photo-Controlled Wettability Switching by Conformal Coating of Nanoscale Topographies with Ultrathin Oxide Films. Chemistry of Materials, 2010, 22, 3349-3352.	3.2	57
52	From Hotâ€Injection Synthesis to Heatingâ€Up Synthesis of Cobalt Nanoparticles: Observation of Kinetically Controllable Nucleation. Angewandte Chemie - International Edition, 2011, 50, 2080-2084.	7.2	57
53	Surface-Relief Gratings and Stable Birefringence Inscribed Using Light of Broad Spectral Range in Supramolecular Polymer-Bisazobenzene Complexes. Journal of Physical Chemistry C, 2012, 116, 2363-2370.	1.5	57
54	Complexes of Magnetic Nanoparticles with Cellulose Nanocrystals as Regenerable, Highly Efficient, and Selective Platform for Protein Separation. Biomacromolecules, 2017, 18, 898-905.	2.6	57

#	Article	lF	CITATIONS
55	Hybrid Langmuir–Blodgett monolayers containing clay minerals: effect of clay concentration and surface charge density on the film formation. Physical Chemistry Chemical Physics, 2004, 6, 4174-4184.	1.3	55
56	Light-Driven Surface Patterning of Supramolecular Polymers with Extremely Low Concentration of Photoactive Molecules. ACS Macro Letters, 2014, 3, 1196-1200.	2.3	52
57	Blocking the Lateral Film Growth at the Nanoscale in Area-Selective Atomic Layer Deposition. Journal of the American Chemical Society, 2008, 130, 11252-11253.	6.6	50
58	On heterogeneity in fluorescent few-atom silver nanoclusters. Physical Chemistry Chemical Physics, 2013, 15, 979-985.	1.3	50
59	From partial to complete optical erasure of azobenzene–polymer gratings: effect of molecular weight. Journal of Materials Chemistry C, 2015, 3, 11011-11016.	2.7	46
60	Efficient separation of immiscible oil/water mixtures using a perforated lotus leaf. Green Chemistry, 2019, 21, 6579-6584.	4.6	46
61	High-affinity and selective detection of pyrophosphate in water by a resorcinarene salt receptor. Chemical Science, 2018, 9, 1358-1367.	3.7	44
62	Highly Luminescent Gold Nanocluster Frameworks. Advanced Optical Materials, 2019, 7, 1900620.	3.6	42
63	High concentration aqueous magnetic fluids: structure, colloidal stability, magnetic and flow properties. Soft Matter, 2018, 14, 6648-6666.	1.2	40
64	Organic memory using [6,6]-phenyl-C61butyric acid methyl ester: morphology, thickness and concentration dependence studies. Nanotechnology, 2008, 19, 035203.	1.3	39
65	Enhanced Emission of Silver Nanoclusters Through Quantitative Phase Transfer. ChemPhysChem, 2010, 11, 3100-3104.	1.0	39
66	Rapid Cationization of Gold Nanoparticles by Two‣tep Phase Transfer. Angewandte Chemie - International Edition, 2015, 54, 7990-7993.	7.2	39
67	Structural diversity in metal–organic nanoparticles based on iron isopropoxide treated lignin. RSC Advances, 2016, 6, 31790-31796.	1.7	39
68	Crystalline Cyclophane–Protein Cage Frameworks. ACS Nano, 2018, 12, 8029-8036.	7.3	39
69	Light-Fuelled Transport of Large Dendrimers and Proteins. Journal of the American Chemical Society, 2014, 136, 6850-6853.	6.6	37
70	Amplified and Localized Photoswitching of TiO ₂ by Micro- and Nanostructuring. ACS Applied Materials & Interfaces, 2015, 7, 15593-15599.	4.0	36
71	Sliding droplets on hydrophilic/superhydrophobic patterned surfaces for liquid deposition. Applied Physics Letters, 2016, 108, .	1.5	35
72	Solid state nanofibers based on self-assemblies: from cleaving from self-assemblies to multilevel hierarchical constructs. Faraday Discussions, 2009, 143, 95.	1.6	34

#	Article	IF	CITATIONS
73	Capillary-driven self-assembly of microchips on oleophilic/oleophobic patterned surface using adhesive droplet in ambient air. Applied Physics Letters, 2011, 99, 034104.	1.5	34
74	Mixed-Monolayer-Protected Au ₂₅ Clusters with Bulky Calix[4]arene Functionalities. Journal of Physical Chemistry Letters, 2014, 5, 585-589.	2.1	34
75	A Short-Chain Multibranched Perfluoroalkyl Thiol for More Sustainable Hydrophobic Coatings. ACS Sustainable Chemistry and Engineering, 2018, 6, 9734-9743.	3.2	34
76	Self-erasing and rewritable wettability patterns on ZnO thin films. Applied Physics Letters, 2010, 97, .	1.5	31
77	Controlled growth of silver nanoparticle arrays guided by a self-assembled polymer–peptide conjugate. Soft Matter, 2010, 6, 3160.	1.2	31
78	Water and Blood Repellent Flexible Tubes. Scientific Reports, 2017, 7, 16019.	1.6	31
79	Large-area arrays of three-dimensional plasmonic subwavelength-sized structures from azopolymer surface-relief gratings. Materials Horizons, 2014, 1, 74-80.	6.4	28
80	Friction and Wetting Transitions of Magnetic Droplets on Micropillared Superhydrophobic Surfaces. Small, 2017, 13, 1700860.	5.2	28
81	Orientation and conformation of octadecyl rhodamine B in hybrid Langmuir–Blodgett monolayers containing clay minerals. Physical Chemistry Chemical Physics, 2004, 6, 5347-5352.	1.3	27
82	Key roles of carbon solubility in single-walled carbon nanotube nucleation and growth. Nanoscale, 2015, 7, 20284-20289.	2.8	27
83	Sub-micron scale patterning of fluorescent silver nanoclusters using low-power laser. Scientific Reports, 2016, 6, 23998.	1.6	26
84	Ferrofluid Microdroplet Splitting for Populationâ€Based Microfluidics and Interfacial Tensiometry. Advanced Science, 2020, 7, 2000359.	5.6	26
85	Relation between s-Polarized and p-Polarized Internal Reflection Spectra:Â Application for the Spectral Resolution of Perpendicular Vibrational Modes. Journal of Physical Chemistry A, 2007, 111, 8787-8791.	1.1	25
86	Few-Atom Silver Clusters as Fluorescent Reporters. Springer Series on Fluorescence, 2010, , 307-332.	0.8	25
87	Ionically interacting nanoclay and nanofibrillated cellulose lead to tough bulk nanocomposites in compression by forced self-assembly. Journal of Materials Chemistry B, 2013, 1, 835-840.	2.9	25
88	A supramolecular host–guest complex for heparin binding and sensing. Nanoscale, 2018, 10, 14022-14030.	2.8	25
89	Light-induced reversible hydrophobization of cationic gold nanoparticles via electrostatic adsorption of a photoacid. Nanoscale, 2019, 11, 14118-14122.	2.8	25
90	Luminescent Gold Nanoclusterâ€Methylcellulose Composite Optical Fibers with Low Attenuation Coefficient and High Photostability. Small, 2021, 17, e2005205.	5.2	25

#	Article	IF	CITATIONS
91	Forceâ€Based Wetting Characterization of Stochastic Superhydrophobic Coatings at Nanonewton Sensitivity. Advanced Materials, 2021, 33, e2105130.	11.1	24
92	Electrical behaviour of native cellulose nanofibril/carbon nanotube hybrid aerogels under cyclic compression. RSC Advances, 2016, 6, 89051-89056.	1.7	20
93	Fabrication of a Waterborne Durable Superhydrophobic Material Functioning in Air and under Oil. Advanced Materials Interfaces, 2018, 5, 1701523.	1.9	20
94	Near-Infrared Chiral Plasmonic Microwires through Precision Assembly of Gold Nanorods on Soft Biotemplates. Journal of Physical Chemistry C, 2021, 125, 3256-3267.	1.5	20
95	Cobalt Nanoparticle Langmuirâ^'Schaefer Films on Ethylene Glycol Subphase. Langmuir, 2010, 26, 13937-13943.	1.6	18
96	Infrared reflection absorption spectroscopy study of smectite clay monolayers. Thin Solid Films, 2004, 466, 291-294.	0.8	17
97	Hollow nanoparticle nanotubes with a nanoscale brick wall structure of clay mineral platelets. Chemical Communications, 2007, , 1366.	2.2	17
98	Recognition of Viologen Derivatives in Water by <i>N</i> -Alkyl Ammonium Resorcinarene Chlorides. Journal of Organic Chemistry, 2017, 82, 5198-5203.	1.7	17
99	Bamboo-like Chained Cavities and Other Halogen-Bonded Complexes from Tetrahaloethynyl Cavitands with Simple Ditopic Halogen Bond Acceptors. Crystal Growth and Design, 2018, 18, 513-520.	1.4	17
100	Self-transport and self-alignment of microchips using microscopic rain. Scientific Reports, 2015, 5, 14966.	1.6	17
101	Paper-based plasmon-enhanced protein sensing by controlled nucleation of silver nanoparticles on cellulose. Cellulose, 2015, 22, 4027-4034.	2.4	16
102	Capillary Self-Alignment of Microchips on Soft Substrates. Micromachines, 2016, 7, 41.	1.4	16
103	Oscillating Ferrofluid Droplet Microrheology of Liquid-Immersed Sessile Droplets. Langmuir, 2017, 33, 6300-6306.	1.6	16
104	Viscosity-enhanced droplet motion in sealed superhydrophobic capillaries. Science Advances, 2020, 6, .	4.7	16
105	The porous nano-fibers raft: analysis of load-carrying mechanism and capacity. Soft Matter, 2011, 7, 7382.	1.2	15
106	Facile synthesis of biocompatible superparamagnetic mesoporous nanoparticles for imageable drug delivery. Microporous and Mesoporous Materials, 2014, 195, 2-8.	2.2	15
107	A microfluidic oxygen sink to create a targeted cellular hypoxic microenvironment under ambient atmospheric conditions. Acta Biomaterialia, 2018, 73, 167-179.	4.1	15
108	Dual emitting Ag ₃₅ nanocluster protected by 2-pyrene imine thiol. Chemical Communications, 2020, 56, 12550-12553.	2.2	15

#	Article	IF	CITATIONS
109	Magnetic Nanocomposites at Microwave Frequencies. Engineering Materials, 2010, , 257-285.	0.3	15
110	2-Methylresorcinarene: a very high packing coefficient in a mono-anion based dimeric capsule and the X-ray crystal structure of the tetra-anion. Chemical Communications, 2016, 52, 8115-8118.	2.2	14
111	Holographic patterning of fluorescent microstructures comprising silver nanoclusters. Optical Materials Express, 2016, 6, 946.	1.6	14
112	Tunable and Magnetic Thiol–ene Micropillar Arrays. Macromolecular Rapid Communications, 2020, 41, e1900522.	2.0	13
113	Ferromagnetic resonance in <i>ïµ</i> -Co magnetic composites. Nanotechnology, 2014, 25, 485707.	1.3	12
114	Gold nanoparticles: calixarene complexation in a mixed calixarene–alkanethiol monolayer. RSC Advances, 2014, 4, 13453.	1.7	12
115	Designed inorganic porous nanovector with controlled release and MRI features for safe administration of doxorubicin. International Journal of Pharmaceutics, 2019, 554, 327-336.	2.6	12
116	Hollow polysiloxane nanostructures based on pressure-induced film expansion. Surface Innovations, 2014, 2, 116-126.	1.4	11
117	Ferrofluidic Manipulator: Automatic Manipulation of Nonmagnetic Microparticles at the Air–Ferrofluid Interface. IEEE/ASME Transactions on Mechatronics, 2021, 26, 1932-1940.	3.7	11
118	<i>N</i> â€Alkyl Ammonium Resorcinarene Salts as Highâ€Affinity Tetravalent Chloride Receptors. Chemistry - A European Journal, 2016, 22, 1355-1361.	1.7	10
119	Waterborne Fluorineâ€Free Superhydrophobic Surfaces Exhibiting Simultaneous CO 2 and Humidity Sorption. Advanced Materials Interfaces, 2019, 6, 1901013.	1.9	10
120	High-resolution crystal structure of a 20 kDa superfluorinated gold nanocluster. Nature Communications, 2022, 13, 2607.	5.8	10
121	Chemical instability of octadecylammonium monolayers. Chemical Communications, 2005, , 4095.	2.2	9
122	Endo-/exo- and halogen-bonded complexes of conformationally rigid C-ethyl-2-bromoresorcinarene and aromatic N-oxides. CrystEngComm, 2017, 19, 4312-4320.	1.3	9
123	Halogen-bonded solvates of tetrahaloethynyl cavitands. CrystEngComm, 2017, 19, 5223-5229.	1.3	9
124	Guest-Induced Folding of the <i>N</i> -Benzyl Substituents in an Ammonium Resorcinarene Chloride and the Formation of a Halogen-Bonded Dimer of Capsules. Crystal Growth and Design, 2016, 16, 6729-6733.	1.4	8
125	Slippery and magnetically responsive micropillared surfaces for manipulation of droplets and beads. AIP Advances, 2020, 10, 085021.	0.6	8
126	Rapid Cationization of Gold Nanoparticles by Twoâ€Step Phase Transfer. Angewandte Chemie, 2015, 127, 8101-8104.	1.6	7

#	Article	IF	CITATIONS
127	Nanoliter deposition on star-shaped hydrophilic–superhydrophobic patterned surfaces. Soft Matter, 2018, 14, 7500-7506.	1.2	7
128	<i>N</i> â€Alkyl Ammonium Resorcinarene Chloride Receptors for Guest Binding in Aqueous Environment. Asian Journal of Organic Chemistry, 2016, 5, 1027-1032.	1.3	6
129	Micropatterning of silver nanoclusters embedded in polyvinyl alcohol films. Optics Letters, 2016, 41, 3627.	1.7	6
130	Host–Guest Complexes of Câ€Ethylâ€2â€methylresorcinarene and Aromatic <i>N</i> , <i>N</i> â€2â€Dioxides. ChemistryOpen, 2017, 6, 417-423.	0.9	6
131	Superoleophobicity: Superoleophobic Slippery Lubricantâ€Infused Surfaces: Combining Two Extremes in the Same Surface (Adv. Mater. 45/2018). Advanced Materials, 2018, 30, 1870338.	11.1	6
132	Force sensing using artificial magnetic cilia. , 2012, , .		5
133	<i>N</i> -Alkyl ammonium resorcinarene polyiodides. CrystEngComm, 2016, 18, 5724-5727.	1.3	5
134	Bloodâ€Repellent Surfaces: Superhydrophobic Bloodâ€Repellent Surfaces (Adv. Mater. 24/2018). Advanced Materials, 2018, 30, 1870173.	11.1	5
135	Solid-state polymer adsorption for surface modification: The role of molecular weight. Journal of Colloid and Interface Science, 2022, 605, 441-450.	5.0	5
136	Functional Magnetic Microdroplets for Antibody Extraction. Advanced Materials Interfaces, 2022, 9, 2101317.	1.9	5
137	Bright and stable gold nanocluster assemblies by silica/zirconia double-shell encapsulation. Journal of Materials Chemistry C, 2022, 10, 10001-10008.	2.7	5
138	Supramolecular guest-host systems: combining high dye doping level with low aggregation tendency. , 2006, 6331, 174.		3
139	Capillary Transport of Miniature Soft Ribbons. Micromachines, 2019, 10, 684.	1.4	3
140	Effect of hydrogen-bond strength on photoresponsive properties of polymer-azobenzene complexes. Canadian Journal of Chemistry, 2020, 98, 531-538.	0.6	3
141	Polymer-dye complexes: supramolecular route toward functional optical materials. , 2006, , .		2
142	Slippery and never wet. Europhysics News, 2017, 48, 30-33.	0.1	2
143	Host-guest complexes of C-propyl-2-bromoresorcinarene with aromatic <i>N</i> -oxides. Supramolecular Chemistry, 2018, 30, 445-454.	1.5	2
144	Rheology of silver nanocluster solutions under confinement. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 384, 570-573.	2.3	1

#	Article	IF	CITATIONS
145	Molecular and particulate organisation in dye-clay films prepared by the Langmuir-Blodgett method. , 2003, , 473-480.		1
146	Light-patterned fluorescent gold nanoclusters in polycarbonate films. Optical Materials Express, 2021, 11, 4015.	1.6	1
147	Superhydrophobic Lubrication: Gas–Liquid Bilayer Reduces the Friction Between Two Solids. Advanced Materials Interfaces, 0, , 2102132.	1.9	1
148	Superhydrophobic Surfaces: Waterborne Fluorineâ€Free Superhydrophobic Surfaces Exhibiting Simultaneous CO ₂ and Humidity Sorption (Adv. Mater. Interfaces 23/2019). Advanced Materials Interfaces, 2019, 6, 1970147.	1.9	0
149	Host-Guest Complex for Heparin Binding and Sensing. ECS Meeting Abstracts, 2021, MA2021-01, 1665-1665.	0.0	0