Shanshan Yao

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3389693/shanshan-yao-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

32 2,954 19 34 g-index

34 3,533 9.1 6
ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
32	Dendrite Growth and Performance of Self-Healing Composite Electrode IPMC Driven by Cu2+. <i>ACS Omega</i> , 2022 , 7, 17575-17582	3.9	2
31	Real-time monitoring of plant stresses via chemiresistive profiling of leaf volatiles by a wearable sensor. <i>Matter</i> , 2021 , 4, 2553-2570	12.7	23
30	Effect of electrode characteristics on electromyographic activity of the masseter muscle. <i>Journal of Electromyography and Kinesiology</i> , 2021 , 56, 102492	2.5	O
29	Gas-Permeable, Ultrathin, Stretchable Epidermal Electronics with Porous Electrodes. <i>ACS Nano</i> , 2020 , 14, 5798-5805	16.7	74
28	Nanomaterial-Enabled Flexible and Stretchable Sensing Systems: Processing, Integration, and Applications. <i>Advanced Materials</i> , 2020 , 32, e1902343	24	106
27	Facile Approach to Fabricating Stretchable Organic Transistors with Laser-Patterned Ag Nanowire Electrodes. <i>ACS Applied Materials & Acs Applied &</i>	9.5	10
26	Buckle-Delamination-Enabled Stretchable Silver Nanowire Conductors. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 41696-41703	9.5	20
25	Electrocardiogram of a Silver Nanowire Based Dry Electrode: Quantitative Comparison With the Standard Ag/AgCl Gel Electrode. <i>IEEE Access</i> , 2019 , 7, 20789-20800	3.5	13
24	Metal Mesh as a Transparent Omnidirectional Strain Sensor. <i>Advanced Materials Technologies</i> , 2019 , 4, 1800698	6.8	19
23	Multifunctional Electronic Textiles Using Silver Nanowire Composites. <i>ACS Applied Materials & ACS Applied Materials & Interfaces</i> , 2019 , 11, 31028-31037	9.5	55
22	A Novel Finger Kinematic Tracking Method Based on Skin-Like Wearable Strain Sensors. <i>IEEE Sensors Journal</i> , 2018 , 18, 3010-3015	4	19
21	Nanomaterial-Enabled Wearable Sensors for Healthcare. Advanced Healthcare Materials, 2018, 7, 1700	889 0.1	282
20	Soft electrothermal actuators using silver nanowire heaters. <i>Nanoscale</i> , 2017 , 9, 3797-3805	7.7	108
19	A Wearable Hydration Sensor with Conformal Nanowire Electrodes. <i>Advanced Healthcare Materials</i> , 2017 , 6, 1601159	10.1	119
18	Ultrasound-triggered noninvasive regulation of blood glucose levels using microgels integrated with insulin nanocapsules. <i>Nano Research</i> , 2017 , 10, 1393-1402	10	55
17	Controlling the self-folding of a polymer sheet using a local heater: the effect of the polymer-heater interface. <i>Soft Matter</i> , 2017 , 13, 3863-3870	3.6	21
16	Low-Power Wearable Systems for Continuous Monitoring of Environment and Health for Chronic Respiratory Disease. <i>IEEE Journal of Biomedical and Health Informatics</i> , 2016 , 20, 1251-1264	7.2	113

LIST OF PUBLICATIONS

Nanomaterial-Enabled Dry Electrodes for Electrophysiological Sensing: A Review. Jom, 2016, 68, 1145-1255 85 15 Evolution of Irradiation-Induced Vacancy Defects in Boron Nitride Nanotubes. Small, 2016, 12, 818-24 11 14 11 Silver nanowire based wearable sensors for multimodal sensing 2016, 13 3 Stretch-Triggered Drug Delivery from Wearable Elastomer Films Containing Therapeutic Depots. 16.7 12 157 ACS Nano, 2015, 9, 9407-15 Design and operation of silver nanowire based flexible and stretchable touch sensors. Journal of 11 2.5 39 Materials Research, 2015, 30, 79-85 Stretchable Conductors: Nanomaterial-Enabled Stretchable Conductors: Strategies, Materials and 10 24 4 Devices (Adv. Mater. 9/2015). Advanced Materials, 2015, 27, 1479-1479 Silver nanowire strain sensors for wearable body motion tracking 2015, 9 1 Nanomaterial-enabled stretchable conductors: strategies, materials and devices. Advanced 24 510 Materials, 2015, 27, 1480-511 Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires. 748 7.7 Nanoscale, **2014**, 6, 2345-52 Surface-energy-assisted perfect transfer of centimeter-scale monolayer and few-layer MoSIFilms 6 16.7 281 onto arbitrary substrates. ACS Nano, 2014, 8, 11522-8 Spray characteristics of a swirl atomiser in trigger sprayers using water than ol mixtures. Canadian 5 2.3 1 Journal of Chemical Engineering, 2013, 91, 1312-1324 High pyroelectricity in lead-free 0.5Ba(Zr0.2Ti0.8)O3D.5(Ba0.7Ca0.3)TiO3ceramics. Journal Physics 67 D: Applied Physics, 2012, 45, 195301 Printed Strain Sensors for On-Skin Electronics. Small Structures, 2100131 8.7 3 5 Formation and characterization of Pt-Cu-IPMC with high specific surface area and dendritic 2.3 1 electrode. Composite Interfaces, 1-13 Ultrasoft Porous 3D Conductive Dry Electrodes for Electrophysiological Sensing and Myoelectric 6.8 2 Control. Advanced Materials Technologies, 2101637