
Sun Hwa Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3389670/publications.pdf Version: 2024-02-01

SUN HWA KIM

#	Article	IF	CITATIONS
1	Ultraefficient extracellular vesicle–guided direct reprogramming of fibroblasts into functional cardiomyocytes. Science Advances, 2022, 8, eabj6621.	10.3	16
2	Sustained Exosomeâ€Guided Macrophage Polarization Using Hydrolytically Degradable PEG Hydrogels for Cutaneous Wound Healing: Identification of Key Proteins and MiRNAs, and Sustained Release Formulation. Small, 2022, 18, e2200060.	10.0	54
3	PDL1-binding peptide/anti-miRNA21 conjugate as a therapeutic modality for PD-L1high tumors and TAMs. Journal of Controlled Release, 2022, 345, 62-74.	9.9	6
4	Extracellular vesicle-guided in situ reprogramming of synovial macrophages for the treatment of rheumatoid arthritis. Biomaterials, 2022, 286, 121578.	11.4	16
5	Extracellular Vesicles as Potential Theranostic Platforms for Skin Diseases and Aging. Pharmaceutics, 2021, 13, 760.	4.5	8
6	A Trojan-Horse Strategy by <i>In Situ</i> Piggybacking onto Endogenous Albumin for Tumor-Specific Neutralization of Oncogenic MicroRNA. ACS Nano, 2021, 15, 11369-11384.	14.6	15
7	Recent Advances in Exosome-Based Drug Delivery for Cancer Therapy. Cancers, 2021, 13, 4435.	3.7	52
8	Development of microRNA-21 mimic nanocarriers for the treatment of cutaneous wounds. Theranostics, 2020, 10, 3240-3253.	10.0	32
9	Versatile activatable vSIRPα-probe for cancer-targeted imaging and macrophage-mediated phagocytosis of cancer cells. Journal of Controlled Release, 2020, 323, 376-386.	9.9	16
10	Exosomeâ€Guided Phenotypic Switch of M1 to M2 Macrophages for Cutaneous Wound Healing. Advanced Science, 2019, 6, 1900513.	11.2	276
11	Enhancing Systemic Delivery of Enzymatically Generated RNAi Nanocomplexes for Cancer Therapy. Advanced Therapeutics, 2019, 2, 1900014.	3.2	1
12	Nanoscale polyelectrolyte complexes encapsulating mRNA and long-chained siRNA for combinatorial cancer gene therapy. Journal of Industrial and Engineering Chemistry, 2018, 64, 430-437.	5.8	6
13	Implication of multivalent aptamers in DNA and DNA–RNA hybrid structures for efficient drug delivery in vitro and in vivo. Journal of Industrial and Engineering Chemistry, 2018, 60, 250-258.	5.8	9
14	Development of Biocompatible HA Hydrogels Embedded with a New Synthetic Peptide Promoting Cellular Migration for Advanced Wound Care Management. Advanced Science, 2018, 5, 1800852.	11.2	69
15	Self-assembled PEGylated albumin nanoparticles (SPAN) as a platform for cancer chemotherapy and imaging. Drug Delivery, 2018, 25, 1570-1578.	5.7	28
16	MicroRNA-mediated non-viral direct conversion of embryonic fibroblasts to cardiomyocytes: comparison of commercial and synthetic non-viral vectors. Journal of Biomaterials Science, Polymer Edition, 2017, 28, 1070-1085.	3.5	8
17	Synergistic anti-tumor effects of bevacizumab and tumor targeted polymerized VEGF siRNA nanoparticles. Biochemical and Biophysical Research Communications, 2017, 489, 35-41.	2.1	25
18	Rolling circle transcription-based polymeric siRNA nanoparticles for tumor-targeted delivery. Journal of Controlled Release, 2017, 263, 29-38.	9.9	49

Sun Hwa Kim

#	Article	IF	CITATIONS
19	Programmed Cell Death Protein Ligand-1 Silencing with Polyethylenimine–Dermatan Sulfate Complex for Dual Inhibition of Melanoma Growth. ACS Nano, 2017, 11, 10135-10146.	14.6	84
20	Synergistic antitumor effects of combination treatment with metronomic doxorubicin and VEGF-targeting RNAi nanoparticles. Journal of Controlled Release, 2017, 267, 203-213.	9.9	35
21	Simultaneous regulation of apoptotic gene silencing and angiogenic gene expression for myocardial infarction therapy: Single-carrier delivery of SHP-1 siRNA and VEGF-expressing pDNA. Journal of Controlled Release, 2016, 243, 182-194.	9.9	21
22	Chemical and structural modifications of RNAi therapeutics. Advanced Drug Delivery Reviews, 2016, 104, 16-28.	13.7	110
23	Enhanced Cytoplasmic Delivery of RAGE siRNA Using Bioreducible Polyethylenimineâ€based Nanocarriers for Myocardial Gene Therapy. Macromolecular Bioscience, 2015, 15, 1755-1763.	4.1	8
24	Deoxycholic acid-modified polyethylenimine based nanocarriers for RAGE siRNA therapy in acute myocardial infarction. Archives of Pharmacal Research, 2015, 38, 1317-1324.	6.3	16
25	RAGE siRNA-mediated gene silencing provides cardioprotection against ventricular arrhythmias in acute ischemia and reperfusion. Journal of Controlled Release, 2015, 217, 315-326.	9.9	20
26	Co-delivery of VEGF and Bcl-2 dual-targeted siRNA polymer using a single nanoparticle for synergistic anti-cancer effects in vivo. Journal of Controlled Release, 2015, 220, 631-641.	9.9	76
27	Cancer-targeted MDR-1 siRNA delivery using self-cross-linked glycol chitosan nanoparticles to overcome drug resistance. Journal of Controlled Release, 2015, 198, 1-9.	9.9	117
28	Crossâ€linked Iron Oxide Nanoparticles for Therapeutic Engineering and in Vivo Monitoring of Mesenchymal Stem Cells in Cerebral Ischemia Model. Macromolecular Bioscience, 2014, 14, 380-389.	4.1	11
29	Theranostic nanomaterials for image-guided gene therapy. MRS Bulletin, 2014, 39, 44-50.	3.5	4
30	MSC-based VEGF gene therapy in rat myocardial infarction model using facial amphipathic bile acid-conjugated polyethyleneimine. Biomaterials, 2014, 35, 1744-1754.	11.4	73
31	Cardiac RNAi therapy using RAGE siRNA/deoxycholic acid-modified polyethylenimine complexes for myocardial infarction. Biomaterials, 2014, 35, 7562-7573.	11.4	38
32	The potential and advances in RNAi therapy: Chemical and structural modifications of siRNA molecules and use of biocompatible nanocarriers. Journal of Controlled Release, 2014, 193, 113-121.	9.9	21
33	Glycol chitosan nanoparticles as specialized cancer therapeutic vehicles: Sequential delivery of doxorubicin and Bcl-2 siRNA. Scientific Reports, 2014, 4, 6878.	3.3	118
34	Anti-apoptotic cardioprotective effects of SHP-1 gene silencing against ischemia–reperfusion injury: Use of deoxycholic acid-modified low molecular weight polyethyleneimine as a cardiac siRNA-carrier. Journal of Controlled Release, 2013, 168, 125-134.	9.9	45
35	Structural modification of siRNA for efficient gene silencing. Biotechnology Advances, 2013, 31, 491-503.	11.7	58
36	Cell-penetrating peptide mimicking polymer-based combined delivery of paclitaxel and siRNA for enhanced tumor growth suppression. International Journal of Pharmaceutics, 2012, 434, 488-493.	5.2	43