
James T Kadonaga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3389594/publications.pdf Version: 2024-02-01

LAMES T KADONACA

#	Article	IF	CITATIONS
1	Tools for neuroanatomy and neurogenetics in <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9715-9720.	7.1	902
2	The RNA Polymerase II Core Promoter. Annual Review of Biochemistry, 2003, 72, 449-479.	11.1	900
3	What's Up and Down with Histone Deacetylation and Transcription?. Cell, 1997, 89, 325-328.	28.9	819
4	ACF, an ISWI-Containing and ATP-Utilizing Chromatin Assembly and Remodeling Factor. Cell, 1997, 90, 145-155.	28.9	586
5	The RNA polymerase II core promoter: a key component in the regulation of gene expression. Genes and Development, 2002, 16, 2583-2592.	5.9	497
6	Regulation of gene expression via the core promoter and the basal transcriptional machinery. Developmental Biology, 2010, 339, 225-229.	2.0	409
7	Regulation of RNA Polymerase II Transcription by Sequence-Specific DNA Binding Factors. Cell, 2004, 116, 247-257.	28.9	330
8	The RNA polymerase II core promoter — the gateway to transcription. Current Opinion in Cell Biology, 2008, 20, 253-259.	5.4	319
9	The Downstream Promoter Element DPE Appears To Be as Widely Used as the TATA Box in Drosophila Core Promoters. Molecular and Cellular Biology, 2000, 20, 4754-4764.	2.3	306
10	SWI2/SNF2 and Related Proteins: ATP-Driven Motors That Disrupt-Protein–DNA Interactions?. Cell, 1997, 88, 737-740.	28.9	305
11	Chromatin remodeling by ATP-dependent molecular machines. BioEssays, 2003, 25, 1192-1200.	2.5	298
12	Distinct activities of CHD1 and ACF in ATP-dependent chromatin assembly. Nature Structural and Molecular Biology, 2005, 12, 160-166.	8.2	240
13	Enhancer-promoter specificity mediated by DPE or TATA core promoter motifs. Genes and Development, 2001, 15, 2515-2519.	5.9	234
14	Perspectives on the RNA polymerase II core promoter. Wiley Interdisciplinary Reviews: Developmental Biology, 2012, 1, 40-51.	5.9	192
15	Rational design of a super core promoter that enhances gene expression. Nature Methods, 2006, 3, 917-922.	19.0	179
16	The MTE, a new core promoter element for transcription by RNA polymerase II. Genes and Development, 2004, 18, 1606-1617.	5.9	172
17	A Basal Transcription Factor That Activates or Represses Transcription. Science, 2000, 290, 982-984.	12.6	161
18	Strand pairing by Rad54 and Rad51 is enhanced by chromatin. Genes and Development, 2002, 16, 2767-2771.	5.9	134

James T Kadonaga

#	Article	IF	CITATIONS
19	The Many Faces of Chromatin Remodeling. Cell, 2001, 106, 523-525.	28.9	131
20	The punctilious RNA polymerase II core promoter. Genes and Development, 2017, 31, 1289-1301.	5.9	126
21	Human Promoters Are Intrinsically Directional. Molecular Cell, 2015, 57, 674-684.	9.7	115
22	Human TFIID Binds to Core Promoter DNA in a Reorganized Structural State. Cell, 2013, 152, 120-131.	28.9	110
23	The TCT motif, a key component of an RNA polymerase II transcription system for the translational machinery. Genes and Development, 2010, 24, 2013-2018.	5.9	108
24	The DPE, a core promoter element for transcription by RNA polymerase II. Experimental and Molecular Medicine, 2002, 34, 259-264.	7.7	99
25	Chromatin Assembly In Vitro with Purified Recombinant ACF and NAP-1. Methods in Enzymology, 2003, 371, 499-515.	1.0	93
26	Strategies for the reconstitution of chromatin. Nature Methods, 2004, 1, 19-26.	19.0	87
27	Caudal, a key developmental regulator, is a DPE-specific transcriptional factor. Genes and Development, 2008, 22, 2823-2830.	5.9	87
28	Dynamics of ATP-dependent chromatin assembly by ACF. Nature, 2002, 418, 896-900.	27.8	81
29	ATP-facilitated Chromatin Assembly with a Nucleoplasmin-like Protein from Drosophila melanogaster. Journal of Biological Chemistry, 1996, 271, 25041-25048.	3.4	79
30	The human initiator is a distinct and abundant element that is precisely positioned in focused core promoters. Genes and Development, 2017, 31, 6-11.	5.9	73
31	TRF2, but not TBP, mediates the transcription of ribosomal protein genes. Genes and Development, 2014, 28, 1550-1555.	5.9	72
32	MPE-seq, a new method for the genome-wide analysis of chromatin structure. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3457-65.	7.1	66
33	Forced Unraveling of Nucleosomes Assembled on Heterogeneous DNA Using Core Histones, NAP-1, and ACF. Journal of Molecular Biology, 2005, 351, 89-99.	4.2	64
34	TBP, Mot1, and NC2 establish a regulatory circuit that controls DPE-dependent versus TATA-dependent transcription. Genes and Development, 2008, 22, 2353-2358.	5.9	64
35	The RNA Polymerase II Core Promoter in <i>Drosophila</i> . Genetics, 2019, 212, 13-24.	2.9	62
36	Biochemical Analysis of Chromatin Containing RecombinantDrosophila Core Histones. Journal of Biological Chemistry, 2002, 277, 8749-8754.	3.4	59

JAMES T KADONAGA

#	Article	IF	CITATIONS
37	Binding of Acf1 to DNA Involves a WAC Motif and Is Important for ACF-Mediated Chromatin Assembly. Molecular and Cellular Biology, 2002, 22, 6344-6353.	2.3	58
38	The prenucleosome, a stable conformational isomer of the nucleosome. Genes and Development, 2015, 29, 2563-2575.	5.9	58
39	The tardigrade damage suppressor protein binds to nucleosomes and protects DNA from hydroxyl radicals. ELife, 2019, 8, .	6.0	55
40	HMGN Proteins Act in Opposition to ATP-Dependent Chromatin Remodeling Factors to Restrict Nucleosome Mobility. Molecular Cell, 2009, 34, 620-626.	9.7	48
41	Three Key Subregions Contribute to the Function of the Downstream RNA Polymerase II Core Promoter. Molecular and Cellular Biology, 2010, 30, 3471-3479.	2.3	45
42	Identification of the human DPR core promoter element using machine learning. Nature, 2020, 585, 459-463.	27.8	43
43	A Conserved N-terminal Motif in Rad54 Is Important for Chromatin Remodeling and Homologous Strand Pairing. Journal of Biological Chemistry, 2004, 279, 27824-27829.	3.4	38
44	NDF, a nucleosome-destabilizing factor that facilitates transcription through nucleosomes. Genes and Development, 2018, 32, 682-694.	5.9	38
45	A general method for purification of H1 histones that are active for repression of basal RNA polymerase II transcription. Protein Expression and Purification, 1991, 2, 162-169.	1.3	35
46	TRF2 and the evolution of the bilateria. Genes and Development, 2014, 28, 2071-2076.	5.9	35
47	Reconstitution of chromatin transcription with purified components reveals a chromatin-specific repressive activity of p300. Nature Structural and Molecular Biology, 2006, 13, 131-139.	8.2	29
48	Transcriptional Analysis of Chromatin Assembled with Purified ACF and dNAP1 Reveals That Acetyl-CoA Is Required for Preinitiation Complex Assembly. Journal of Biological Chemistry, 2000, 275, 39819-39822.	3.4	26
49	Regulation of the Rhp26 ^{ERCC6/CSB} chromatin remodeler by a novel conserved leucine latch motif. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18566-18571.	7.1	22
50	Perspectives on Unidirectional versus Divergent Transcription. Molecular Cell, 2015, 60, 348-349.	9.7	19
51	Enhancement of homology-directed repair with chromatin donor templates in cells. ELife, 2020, 9, .	6.0	18
52	A simple and versatile system for the ATP-dependent assembly of chromatin. Journal of Biological Chemistry, 2017, 292, 19478-19490.	3.4	13
53	Identification of evolutionarily conserved downstream core promoter elements required for the transcriptional regulation of Fushi tarazu target genes. PLoS ONE, 2019, 14, e0215695.	2.5	11
54	Biochemical Analysis of Histone Deacetylase-independent Transcriptional Repression by MeCP2. Journal of Biological Chemistry, 2013, 288, 7096-7104.	3.4	10

James T Kadonaga

#	Article	IF	CITATIONS
55	Molecular basis of chromatin remodeling by Rhp26, a yeast CSB ortholog. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6120-6129.	7.1	10
56	The Annealing Helicase and Branch Migration Activities of Drosophila HARP. PLoS ONE, 2014, 9, e98173.	2.5	8
57	Prenucleosomes and Active Chromatin. Cold Spring Harbor Symposia on Quantitative Biology, 2015, 80, 65-72.	1.1	7
58	The transformation of the DNA template in RNA polymerase II transcription: a historical perspective. Nature Structural and Molecular Biology, 2019, 26, 766-770.	8.2	5
59	Reconstitution of Chromatin by Stepwise Salt Dialysis. Bio-protocol, 2021, 11, e3977.	0.4	2
60	NDF is a transcription factor that stimulates elongation by RNA polymerase II. Genes and Development, 2022, 36, 294-299.	5.9	1
61	Course 3 Regulation of transcription by RNA polymerase II. Les Houches Summer School Proceedings, 2005, , 73-89.	0.2	0