
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3389449/publications.pdf

Version: 2024-02-01

ÄOLKER REKIR TOPÄSU

#	Article	IF	CITATIONS
1	Properties of concrete containing waste glass. Cement and Concrete Research, 2004, 34, 267-274.	11.0	476
2	The properties of rubberized concretes. Cement and Concrete Research, 1995, 25, 304-310.	11.0	467
3	Properties of concretes produced with waste concrete aggregate. Cement and Concrete Research, 2004, 34, 1307-1312.	11.0	422
4	Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic. Computational Materials Science, 2008, 41, 305-311.	3.0	387
5	Effect of waste marble dust content as filler on properties of self-compacting concrete. Construction and Building Materials, 2009, 23, 1947-1953.	7.2	275
6	Using waste concrete as aggregate. Cement and Concrete Research, 1995, 25, 1385-1390.	11.0	197
7	Effect of different fibers on the mechanical properties of concrete containing fly ash. Construction and Building Materials, 2007, 21, 1486-1491.	7.2	181
8	Prediction of mechanical properties of recycled aggregate concretes containing silica fume using artificial neural networks and fuzzy logic. Computational Materials Science, 2008, 42, 74-82.	3.0	178
9	Properties of the autoclaved aerated concrete produced from coal bottom ash. Journal of Materials Processing Technology, 2009, 209, 767-773.	6.3	168
10	Effect of aggregate type on properties of hardened self-consolidating lightweight concrete (SCLC). Construction and Building Materials, 2010, 24, 1286-1295.	7.2	159
11	Collision behaviours of rubberized concrete. Cement and Concrete Research, 1997, 27, 1893-1898.	11.0	142
12	Use of waste marble and recycled aggregates in self-compacting concrete for environmental sustainability. Journal of Cleaner Production, 2014, 84, 691-700.	9.3	140
13	Experimental investigation of some fresh and hardened properties of rubberized self-compacting concrete. Materials & Design, 2009, 30, 3056-3065.	5.1	138
14	Physical and mechanical properties of concretes produced with waste concrete. Cement and Concrete Research, 1997, 27, 1817-1823.	11.0	126
15	Prediction of long-term effects of GGBFS on compressive strength of concrete by artificial neural networks and fuzzy logic. Construction and Building Materials, 2009, 23, 1279-1286.	7.2	121
16	The effect of fly ash content and types of aggregates on the properties of pre-fabricated concrete interlocking blocks (PCIBs). Construction and Building Materials, 2012, 30, 180-187.	7.2	121
17	Durability and microstructure characteristics of alkali activated coal bottom ash geopolymer cement. Journal of Cleaner Production, 2014, 81, 211-217.	9.3	121
18	Prediction of rubberized concrete properties using artificial neural network and fuzzy logic. Construction and Building Materials, 2008, 22, 532-540.	7.2	120

#	Article	IF	CITATIONS
19	Utilization of natural zeolite in aerated concrete production. Cement and Concrete Composites, 2010, 32, 1-8.	10.7	120
20	Prediction of properties of waste AAC aggregate concrete using artificial neural network. Computational Materials Science, 2007, 41, 117-125.	3.0	115
21	Durability of Rubberized Mortar and Concrete. Journal of Materials in Civil Engineering, 2007, 19, 173-178.	2.9	111
22	Influence of fly ash on corrosion resistance and chloride ion permeability of concrete. Construction and Building Materials, 2012, 31, 258-264.	7.2	108
23	Manufacture of high heat conductivity resistant clay bricks containing perlite. Building and Environment, 2007, 42, 3540-3546.	6.9	105
24	Effect of expanded perlite aggregate on the properties of lightweight concrete. Journal of Materials Processing Technology, 2008, 204, 34-38.	6.3	104
25	Semi lightweight concretes produced by volcanic slags. Cement and Concrete Research, 1997, 27, 15-21.	11.0	98
26	Thermal expansion of self-consolidating normal and lightweight aggregate concrete at elevated temperature. Construction and Building Materials, 2009, 23, 3063-3069.	7.2	95
27	Properties of autoclaved lightweight aggregate concrete. Building and Environment, 2007, 42, 4108-4116.	6.9	94
28	Properties of heavyweight concrete produced with barite. Cement and Concrete Research, 2003, 33, 815-822.	11.0	92
29	The role of scrap rubber particles on the drying shrinkage and mechanical properties of self-consolidating mortars. Construction and Building Materials, 2010, 24, 1141-1150.	7.2	91
30	Alkali–silica reactions of mortars produced by using waste glass as fine aggregate and admixtures such as fly ash and Li2CO3. Waste Management, 2008, 28, 878-884.	7.4	88
31	Effect of blended cements produced with natural zeolite and industrial by-products on alkali-silica reaction and sulfate resistance of concrete. Construction and Building Materials, 2011, 25, 1789-1795.	7.2	86
32	Using ANN and ANFIS to predict the mechanical and chloride permeability properties of concrete containing GGBFS and CNI. Composites Part B: Engineering, 2013, 45, 688-696.	12.0	84
33	Properties of mortars with fly ash as fine aggregate. Construction and Building Materials, 2015, 93, 782-789.	7.2	84
34	Assessment of the brittleness index of rubberized concretes. Cement and Concrete Research, 1997, 27, 177-183.	11.0	82
35	Electrical conductivity of setting cement paste with different mineral admixtures. Construction and Building Materials, 2012, 28, 414-420.	7.2	73
36	Effect of ground granulate blast-furnace slag on corrosion performance of steel embedded in concrete. Materials & Design, 2010, 31, 3358-3365.	5.1	59

#	Article	IF	CITATIONS
37	Effect of the use of mineral filler on the properties of concrete. Cement and Concrete Research, 2003, 33, 1071-1075.	11.0	56
38	Influence of concrete properties on bleeding and evaporation. Cement and Concrete Research, 2004, 34, 275-281.	11.0	56
39	Modeling corrosion currents of reinforced concrete using ANN. Automation in Construction, 2009, 18, 145-152.	9.8	55
40	Predicting the strength development of cements produced with different pozzolans by neural network and fuzzy logic. Materials & Design, 2008, 29, 1986-1991.	5.1	53
41	Properties of geopolymer from circulating fluidized bed combustion coal bottom ash. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 1472-1477.	5.6	47
42	Effect of high dosage lignosulphonate and naphthalene sulphonate based plasticizer usage on micro concrete properties. Construction and Building Materials, 2016, 120, 189-197.	7.2	47
43	Properties of Reinforced Concrete Steel Rebars Exposed to High Temperatures. Research Letters in Materials Science, 2008, 2008, 1-4.	0.2	43
44	Effect of blended cements with natural zeolite and industrial by-products on rebar corrosion and high temperature resistance of concrete. Construction and Building Materials, 2012, 35, 906-911.	7.2	43
45	Experimental investigation of drying shrinkage cracking of composite mortars incorporating crushed tile fine aggregate. Materials & Design, 2010, 31, 4088-4097.	5.1	40
46	Fine aggregate and curing temperature effect on concrete maturity. Cement and Concrete Research, 2005, 35, 758-762.	11.0	38
47	Prediction of rubberized mortar properties using artificial neural network and fuzzy logic. Journal of Materials Processing Technology, 2008, 199, 108-118.	6.3	34
48	Pozzolanic effect of andesite waste powder on mechanical properties of high strength concrete. Construction and Building Materials, 2018, 165, 494-503.	7.2	34
49	Concrete cover effect on reinforced concrete bars exposed to high temperatures. Construction and Building Materials, 2007, 21, 1155-1160.	7.2	31
50	Estimation of the modulus of elasticity of slag concrete by using composite material models. Construction and Building Materials, 2010, 24, 741-748.	7.2	29
51	Modeling of some properties of the crushed tile concretes exposed to elevated temperatures. Construction and Building Materials, 2011, 25, 1883-1889.	7.2	26
52	Effect of admixture ratio and aggregate type on self-leveling screed properties. Construction and Building Materials, 2016, 116, 321-325.	7.2	25
53	Influence of aggregate type on workability of self-consolidating lightweight concrete. Magazine of Concrete Research, 2011, 63, 1-12.	2.0	23
54	The effect of ground granulated blast-furnace slag on properties of Horasan mortar. Construction and Building Materials, 2013, 40, 448-454.	7.2	22

#	Article	IF	CITATIONS
55	Prediction of restrained shrinkage crack widths of slag mortar composites by Takagi and Sugeno ANFIS models. Neural Computing and Applications, 2016, 27, 2523-2536.	5.6	22
56	Analysis of Rubberized Concrete as a Three-phase Composite Material. Journal of Composite Materials, 2009, 43, 1251-1263.	2.4	21
57	Effects of bottom ash and granulated blast furnace slag as fine aggregate on abrasion resistance of concrete. Science and Engineering of Composite Materials, 2017, 24, 261-269.	1.4	21
58	Investigation and recycling of paint sludge with cement and lime for producing lightweight construction mortar. Journal of Environmental Chemical Engineering, 2017, 5, 861-869.	6.7	21
59	Effect of carbon black on electrical curing of fresh concrete for cold regions. Construction and Building Materials, 2020, 247, 118572.	7.2	21
60	Effect of boron waste on the properties of mortar and concrete. Waste Management and Research, 2010, 28, 626-633.	3.9	18
61	Properties of corrosion inhibitors on reinforced concrete. Journal of Structural Engineering & Applied Mechanics, 2020, 3, 93-109.	0.3	16
62	Effects of Crushed RAP on Free and Restrained Shrinkage of Mortars. International Journal of Concrete Structures and Materials, 2009, 3, 91-95.	3.2	16
63	A two-phase composite materials approach to the workability of concrete. Cement and Concrete Composites, 1995, 17, 319-325.	10.7	15
64	Bond strength of polymer lightweight aggregate concrete. Polymer Composites, 2013, 34, 2125-2132.	4.6	14
65	Alternative estimation of the modulus of elasticity for dam concrete. Cement and Concrete Research, 2005, 35, 2199-2202.	11.0	13
66	Determination of optimal microwave curing cycle for fly ash mortars. Canadian Journal of Civil Engineering, 2008, 35, 349-357.	1.3	11
67	The effect of cover thickness on rebars exposed to elevated temperatures. Construction and Building Materials, 2008, 22, 2053-2058.	7.2	10
68	The effect of elevated temperatures on corroded and uncorroded reinforcement embedded in mortar. Construction and Building Materials, 2010, 24, 2101-2107.	7.2	9
69	The influence of silicoferrochromium fume on concrete properties. Cement and Concrete Research, 1995, 25, 387-394.	11.0	8
70	Relationship between methylene blue values of concrete aggregate fines and some concrete properties. Canadian Journal of Civil Engineering, 2008, 35, 379-383.	1.3	8
71	Effects of slag fineness on durability of mortars. Journal of Zhejiang University: Science A, 2007, 8, 1725-1730.	2.4	7
72	Influence of cover thickness on the mechanical properties of steel bar in mortar exposed to high temperatures. Fire and Materials, 2011, 35, 93-103.	2.0	6

#	Article	IF	CITATIONS
73	A discussion of the paper "The maturity method: Modifications to improve estimation of concrete strength at later age―by Yahia A. Abdel-Jawad. Construction and Building Materials, 2007, 21, 1144-1148.	7.2	5
74	Effect of aggregate type on linear thermal expansion of self-consolidating concrete at elevated temperatures. Science and Engineering of Composite Materials, 2012, 19, 259-269.	1.4	4
75	Yüksek Fırın Cüruf Katkılı Çimento Pastalarının Elektriksel Özdirençlerinin Araştırılmas Polytechnic, 0, , .	ı, Journa 0.7	l of 4
76	Strength estimation of unisothermally cured concretes with matrices. Construction and Building Materials, 2011, 25, 1455-1459.	7.2	3
77	Improvement of Khorasan mortar with fly ash for restoration of historical buildings. Science and Engineering of Composite Materials, 2014, 21, .	1.4	3
78	Properties of geopolymers produced with sugar press filter waste and fly ash under certain curing conditions. Journal of Building Engineering, 2021, 44, 102938.	3.4	3
79	Using the Maturity Method in Concrete Produced with Setting Agents. Journal of Materials in Civil Engineering, 2007, 19, 569-574.	2.9	2
80	Electrical Resistivity of Fly Ash Blended Cement Paste at Hardening Stage. Medziagotyra, 2016, 22, .	0.2	2
81	Experimental investigation of utilizing chemical additives and new generation corrosion inhibitors on reinforced concrete. Research on Engineering Structures and Materials, 2020, , .	0.4	2
82	A discussion of the paper "Physico-mechanical properties of aerated cement composites containing shredded rubber waste―by A. Benazzouk, O. Douzane, K. Mezreb and M. Quéneudec. Cement and Concrete Composites, 2007, 29, 337-338.	10.7	1
83	Properties of High Content Ground Granulated Blast Furnace Slag Concrete. Lecture Notes in Civil Engineering, 2018, , 114-126.	0.4	1
84	Electrical Curing Application on Cement-based Mortar with Different Stress Intensity. Lecture Notes in Civil Engineering, 2018, , 462-468.	0.4	1
85	A Review on the Effect of Environmental Conditions on Concrete Evaporation and Bleeding. Lecture Notes in Civil Engineering, 2018, , 413-426.	0.4	1
86	Effect of high temperature on the mechanical behavior of cement-bonded wood composite produced with wood waste. Challenge Journal of Structural Mechanics, 2021, 7, 42.	0.3	1
87	Strength-Maturity Relations of Concrete for Different Cement Types. Lecture Notes in Civil Engineering, 2018, , 435-443.	0.4	1
88	Electrical and mechanical properties of historical mortars in Bursa/Turkey. , 2019, 18, 54-67.		1
89	Improving the Corrosion Resistance of Reinforcement Embedded in Concrete with High Strength Zinc, Zinc-Boron and Zinc-Boron-Nitrogen Nanocrystal Composite Coating. Arabian Journal for Science and Engineering, 0, , .	3.0	1
90	Fracture toughness of a solidified composite residual material. Cement and Concrete Research, 1996, 26, 521-527.	11.0	0

#	Article	IF	CITATIONS
91	Influence of concrete properties on bleeding and evaporation. Cement and Concrete Research, 2003, 34, 275-275.	11.0	0
92	Early strength gain of mortar with prehydration of the cements. Canadian Journal of Civil Engineering, 2010, 37, 125-130.	1.3	0
93	Properties of Mortars Produced with PKF Press Filter Waste. Lecture Notes in Civil Engineering, 2018, , 347-360.	0.4	0
94	ESTIMATION OF OPTIMUM FILTER CAKE IN PRODUCTION OF IMPERMEABLE LAYER USING FUZZY LOGIC. Environmental Engineering and Management Journal, 2014, 13, 353-360.	0.6	0
95	Effect of Hyper-plasticizer Additive Rates on the Properties of Polypropylene Fibre Tempered Concretes. Lecture Notes in Civil Engineering, 2018, , 309-320.	0.4	0
96	Use of Waste Concrete in Cement Production. Lecture Notes in Civil Engineering, 2018, , 321-330.	0.4	0
97	Reaktif Pudra Betonlarının Basınç Dayanımının ANFIS ile Tahmini. Journal of Polytechnic, 0, , .	0.7	0
98	An investigation on the properties of woodcrete exposed to high temperature. Challenge Journal of Concrete Research Letters, 2020, 11, 105.	0.3	0
99	Atık Lastik Katılmış Betonun Süspansiyon Teorisi İle İncelenmesi. El-Cezeri Journal of Science and Engineering, 0, , .	0.1	0