Uta Schirpke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3389433/publications.pdf Version: 2024-02-01

11TA SCHIPPER

#	Article	IF	CITATIONS
1	Stakeholder perspectives on ecosystem services of mountain lakes in the European Alps. Ecosystem Services, 2022, 53, 101386.	2.3	20
2	Effects of land use and climate on carbon and nitrogen pool partitioning in European mountain grasslands. Science of the Total Environment, 2022, 822, 153380.	3.9	10
3	Not too small to benefit society: insights into perceived cultural ecosystem services of mountain lakes in the European Alps. Ecology and Society, 2022, 27, .	1.0	17
4	Using the Ecosystem Services Concept to Assess Transformation of Agricultural Landscapes in the European Alps. Land, 2022, 11, 49.	1.2	6
5	How do anthropogenic pressures affect the provision of ecosystem services of small mountain lakes?. Anthropocene, 2022, 38, 100336.	1.6	14
6	Exposure to global change pressures and potential impacts on ecosystem services of mountain lakes in the European Alps. Journal of Environmental Management, 2022, 318, 115606.	3.8	14
7	How to consider history in landscape ecology: patterns, processes, and pathways. Landscape Ecology, 2021, 36, 2317-2328.	1.9	29
8	Agent-based modelling of water balance in a social-ecological system: A multidisciplinary approach for mountain catchments. Science of the Total Environment, 2021, 755, 142962.	3.9	17
9	A multi-pressure analysis of ecosystem services for conservation planning in the Alps. Ecosystem Services, 2021, 47, 101230.	2.3	20
10	"A Gem among the Rocksâ€â€"Identifying and Measuring Visual Preferences for Mountain Lakes. Water (Switzerland), 2021, 13, 1151.	1.2	12
11	Quantifying Ecosystem Services of High Mountain Lakes across Different Socio-Ecological Contexts. Sustainability, 2021, 13, 6051.	1.6	15
12	Trends in Ecosystem Services across Europe Due to Land-Use/Cover Changes. Sustainability, 2021, 13, 7095.	1.6	7
13	Editorial: Mountain landscapes: Protected areas, ecosystem services, and future challenges. Ecosystem Services, 2021, 49, 101302.	2.3	20
14	Effects of past landscape changes on aesthetic landscape values in the European Alps. Landscape and Urban Planning, 2021, 212, 104109.	3.4	35
15	Recreational ecosystem services of mountain lakes in the European Alps: Preferences, visitor groups and management implications. Journal of Outdoor Recreation and Tourism, 2021, 35, 100421.	1.3	5
16	What can geotagged photographs tell us about cultural ecosystem services of lakes?. Ecosystem Services, 2021, 51, 101354.	2.3	31
17	Enhancing outdoor recreation and biodiversity through payments for ecosystem services: emerging potentials from selected Natura 2000 sites in Italy. Environment, Development and Sustainability, 2020, 22, 2045-2067.	2.7	6
18	Grassland biomass balance in the European Alps: current and future ecosystem service perspectives. Ecosystem Services, 2020, 45, 101163.	2.3	38

#	Article	IF	CITATIONS
19	Cultural ecosystem services in mountain regions: Conceptualising conflicts among users and limitations of use. Ecosystem Services, 2020, 46, 101210.	2.3	47
20	Assessing conflicts between winter recreational activities and grouse species. Journal of Environmental Management, 2020, 276, 111194.	3.8	16
21	Aesthetic preference is related to organized complexity. PLoS ONE, 2020, 15, e0235257.	1.1	18
22	Spatio-temporal changes in ecosystem service values: Effects of land-use changes from past to future (1860–2100). Journal of Environmental Management, 2020, 272, 111068.	3.8	67
23	The role of land management and elevation in shaping soil microbial communities: Insights from the Central European Alps. Soil Biology and Biochemistry, 2020, 150, 107951.	4.2	37
24	Does socioeconomic diversification enhance multifunctionality of mountain landscapes?. Ecosystem Services, 2020, 44, 101122.	2.3	28
25	Management Intensification of Hay Meadows and Fruit Orchards Alters Soil Macro- Invertebrate Communities Differently. Agronomy, 2020, 10, 767.	1.3	4
26	Ordering 'wilderness': Variations in public representations of wilderness and their spatial distributions. Landscape and Urban Planning, 2020, 202, 103875.	3.4	10
27	Assessing ecosystem service potentials to evaluate terrestrial, coastal and marine ecosystem types in Northern Germany – An expert-based matrix approach. Ecological Indicators, 2020, 112, 106116.	2.6	55
28	Towards an integrative assessment of land-use type values from the perspective of ecosystem services. Ecosystem Services, 2020, 42, 101082.	2.3	36
29	Functional spatial units are fundamental for modelling ecosystem services in mountain regions. Applied Geography, 2020, 118, 102200.	1.7	11
30	Application of the Ecosystem Service Concept in Social–Ecological Systems—from Theory to Practice. Sustainability, 2020, 12, 2960.	1.6	6
31	Soil Macroinvertebrate Distribution Along a Subalpine Land Use Transect. Mountain Research and Development, 2020, 40, .	0.4	3
32	Symbolic entities in the European Alps: Perception and use of a cultural ecosystem service. Ecosystem Services, 2019, 39, 100980.	2.3	15
33	An integrated method for the mapping of landscape preferences at the regional scale. Ecological Indicators, 2019, 106, 105430.	2.6	28
34	Upscaling ecosystem service maps to administrative levels: beyond scale mismatches. Science of the Total Environment, 2019, 660, 1565-1575.	3.9	14
35	Stakeholder perspectives on ecosystem service supply and ecosystem service demand bundles. Ecosystem Services, 2019, 37, 100938.	2.3	112
36	A transnational perspective of global and regional ecosystem service flows from and to mountain regions. Scientific Reports, 2019, 9, 6678.	1.6	76

#	Article	IF	CITATIONS
37	What drives the future supply of regulating ecosystem services in a mountain forest landscape?. Forest Ecology and Management, 2019, 445, 37-47.	1.4	70
38	Analyzing Spatial Congruencies and Mismatches between Supply, Demand and Flow of Ecosystem Services and Sustainable Development. Sustainability, 2019, 11, 2227.	1.6	27
39	Assessing Freshwater Provision and Consumption in the Alpine Space Applying the Ecosystem Service Concept. Sustainability, 2019, 11, 1131.	1.6	22
40	Geographical heterogeneity in mountain grasslands dynamics in the Austrian-Italian Tyrol region. Applied Geography, 2019, 106, 50-59.	1.7	28
41	Change from agricultural to touristic use: Effects on the aesthetic value of landscapes over the last 150†years. Landscape and Urban Planning, 2019, 187, 23-35.	3.4	56
42	Agent-Based Modelling of a Coupled Water Demand and Supply System at the Catchment Scale. Sustainability, 2019, 11, 6178.	1.6	10
43	Using conjoint analysis to gain deeper insights into aesthetic landscape preferences. Ecological Indicators, 2019, 96, 202-212.	2.6	47
44	Integrating supply, flow and demand to enhance the understanding of interactions among multiple ecosystem services. Science of the Total Environment, 2019, 651, 928-941.	3.9	212
45	Recreational ecosystem services in protected areas: A survey of visitors to Natura 2000 sites in Italy. Journal of Outdoor Recreation and Tourism, 2018, 21, 39-50.	1.3	45
46	Symbolic species as a cultural ecosystem service in the European Alps: insights and open issues. Landscape Ecology, 2018, 33, 711-730.	1.9	44
47	Revealing spatial and temporal patterns of outdoor recreation in the European Alps and their surroundings. Ecosystem Services, 2018, 31, 336-350.	2.3	129
48	Agricultural landscapes between intensification and abandonment: the expectations of the public in a Central-Alpine cross-border region. Landscape Research, 2018, 43, 428-442.	0.7	18
49	Indigenous livestock breeds as indicators for cultural ecosystem services: A spatial analysis within the Alpine Space. Ecological Indicators, 2018, 94, 55-63.	2.6	60
50	Positive effects of payments for ecosystem services on biodiversity and socio-economic development: Examples from Natura 2000 sites in Italy. Ecosystem Services, 2018, 34, 96-105.	2.3	52
51	Multiscale socio-ecological networks in the age of information. PLoS ONE, 2018, 13, e0206672.	1.1	29
52	Decline of rare and specialist species across multiple taxonomic groups after grassland intensification and abandonment. Biodiversity and Conservation, 2018, 27, 3729-3744.	1.2	49
53	Community-specific hydraulic conductance potential of soil water decomposed for two Alpine grasslands by small-scale lysimetry. Biogeosciences, 2018, 15, 106-1078.	1.3	7
54	How to support the effective management of Natura 2000 sites?. Journal of Environmental Planning and Management, 2017, 60, 383-398.	2.4	29

#	Article	IF	CITATIONS
55	Using land use/land cover trajectories to uncover ecosystem service patterns across the Alps. Regional Environmental Change, 2017, 17, 2237-2250.	1.4	55
56	Supporting the Management of Ecosystem Services in Protected Areas: Trade-Offs Between Effort and Accuracy in Evaluation. Journal of Environmental Assessment Policy and Management, 2017, 19, 1750007.	4.3	6
57	Decomposing the land-use specific response of plant functional traits along environmental gradients. Science of the Total Environment, 2017, 599-600, 750-759.	3.9	19
58	Characteristic trajectories of ecosystem services in mountains. Frontiers in Ecology and the Environment, 2017, 15, 150-159.	1.9	115
59	Operationalising ecosystem services for effective management of protected areas: Experiences and challenges. Ecosystem Services, 2017, 28, 105-114.	2.3	40
60	Historical trajectories in land use pattern and grassland ecosystem services in two European alpine landscapes. Regional Environmental Change, 2017, 17, 2251-2264.	1.4	71
61	Participative Spatial Scenario Analysis for Alpine Ecosystems. Environmental Management, 2017, 60, 679-692.	1.2	22
62	Influence of Land-Use Intensification on Vegetation C-Stocks in an Alpine Valley from 1865 to 2003. Ecosystems, 2017, 20, 1391-1406.	1.6	18
63	Future impacts of changing land-use and climate on ecosystem services of mountain grassland and their resilience. Ecosystem Services, 2017, 26, 79-94.	2.3	193
64	Climate change versus land-use change—What affects the mountain landscapes more?. Land Use Policy, 2017, 60, 60-72.	2.5	92
65	Mapping the ecosystem service delivery chain: Capacity, flow, and demand pertaining to aesthetic experiences in mountain landscapes. Science of the Total Environment, 2017, 574, 422-436.	3.9	88
66	Plant functional assemblages as indicators of the resilience of grassland ecosystem service provision. Ecological Indicators, 2017, 73, 118-127.	2.6	29
67	Down to future: Transplanted mountain meadows react with increasing phytomass or shifting species composition. Flora: Morphology, Distribution, Functional Ecology of Plants, 2016, 224, 172-182.	0.6	13
68	Identifying and mapping the touristsâ;; perception of cultural ecosystem services: A case study from an Alpine region. Land Use Policy, 2016, 56, 251-261.	2.5	113
69	Linking long-term landscape dynamics to the multiple interactions among ecosystem services in the European Alps. Landscape Ecology, 2016, 31, 1903-1918.	1.9	93
70	Cultural ecosystem services of mountain regions: Modelling the aesthetic value. Ecological Indicators, 2016, 69, 78-90.	2.6	159
71	Ecosystem services in mountain regions: experts' perceptions and research intensity. Regional Environmental Change, 2016, 16, 1989-2004.	1.4	47
72	Exploring socio-cultural values of ecosystem service categories in the Central Alps: the influence of socio-demographic factors and landscape type. Regional Environmental Change, 2016, 16, 2033-2044.	1.4	72

#	Article	IF	CITATIONS
73	Using a new PDP modelling approach for land-use and land-cover change predictions: A case study in the Stubai Valley (Central Alps). Ecological Modelling, 2016, 322, 101-114.	1.2	15
74	Impact of droughts on water provision in managed alpine grasslands in two climatically different regions of the Alps. Ecohydrology, 2015, 8, 1600-1613.	1.1	37
75	Mapping Alpine Landscape Values and Related Threats as Perceived by Tourists. Landscape Research, 2015, 40, 451-465.	0.7	57
76	The dark side of biodiversity: Spatial application of the biological soil quality indicator (BSQ). Ecological Indicators, 2015, 53, 240-246.	2.6	46
77	Different management of larch grasslands in the European Alps shows low impact on above- and belowground carbon stocks. Agriculture, Ecosystems and Environment, 2015, 213, 186-193.	2.5	14
78	Ecosystem services and economic development in Austrian agricultural landscapes — The impact of policy and climate change scenarios on trade-offs and synergies. Ecological Economics, 2015, 109, 161-174.	2.9	104
79	Assessment of Ecosystem Services provided by Italian forests: first results from Life+ Making Good Natura project. , 2015, , .		1
80	On the Effects of Scale for Ecosystem Services Mapping. PLoS ONE, 2014, 9, e112601.	1.1	110
81	Mapping beneficiaries of ecosystem services flows from Natura 2000 sites. Ecosystem Services, 2014, 9, 170-179.	2.3	63
82	Ecosystem services-based SWOT analysis of protected areas for conservation strategies. Journal of Environmental Management, 2014, 146, 543-551.	3.8	64
83	Estimation of soil moisture patterns in mountain grasslands by means of SAR RADARSAT2 images andhydrological modeling. Journal of Hydrology, 2014, 516, 245-257.	2.3	68
84	Predicting scenic beauty of mountain regions. Landscape and Urban Planning, 2013, 111, 1-12.	3.4	157
85	Relative contributions of plant traits and soil microbial properties to mountain grassland ecosystem services. Journal of Ecology, 2013, 101, 47-57.	1.9	265
86	Comparing land-use alternatives: Using the ecosystem services concept to define a multi-criteria decision analysis. Ecological Economics, 2013, 93, 128-136.	2.9	124
87	Multiple ecosystem services of a changing Alpine landscape: past, present and future. International Journal of Biodiversity Science, Ecosystem Services & Management, 2013, 9, 123-135.	2.9	80
88	Can We Model the Scenic Beauty of an Alpine Landscape?. Sustainability, 2013, 5, 1080-1094.	1.6	41
89	Long-Term Socio-ecological Research in Mountain Regions: Perspectives from the Tyrolean Alps. , 2013, , 505-525.		4
90	Distance to nature—A new biodiversity relevant environmental indicator set at the landscape level. Ecological Indicators, 2012, 15, 208-216.	2.6	87

#	Article	IF	CITATIONS
91	SPA-LUCC: Developing land-use/cover scenarios in mountain landscapes. Ecological Informatics, 2012, 12, 68-76.	2.3	40
92	Plant communities of mountain grasslands in a broad cross-section of the Eastern Alps. Flora: Morphology, Distribution, Functional Ecology of Plants, 2011, 206, 433-443.	0.6	28
93	Definition of the potential treeline in the European Alps and its benefit for sustainability monitoring. Ecological Indicators, 2011, 11, 438-447.	2.6	23
94	Stakeholder perceptions of grassland ecosystem services in relation to knowledge on soil fertility and biodiversity. Regional Environmental Change, 2011, 11, 791-804.	1.4	239
95	Effects of land-use and land-cover pattern on landscape-scale biodiversity in the European Alps. Agriculture, Ecosystems and Environment, 2010, 139, 13-22.	2.5	125
96	Seasonal dynamics of surface runoff in mountain grassland ecosystems differing in land use. Journal of Hydrology, 2010, 385, 95-104.	2.3	47
97	An integrative approach for analysing landscape dynamics in diverse cultivated and natural mountain areas. Landscape Ecology, 2009, 24, 611-628.	1.9	66
98	Plant diversity declines with recent land use changes in European Alps. Plant Ecology, 2009, 202, 195-210.	0.7	135
99	Effects of Historical and Likely Future Scenarios of Land Use on Above- and Belowground Vegetation Carbon Stocks of an Alpine Valley. Ecosystems, 2008, 11, 1383-1400.	1.6	68
100	Stakeholder Perceptions of the Impacts of Rural Funding Scenarios on Mountain Landscapes Across Europe. Ecosystems, 2008, 11, 1368-1382.	1.6	15
101	Development and validation of a spatial snow-glide model. Ecological Modelling, 2008, 211, 363-374.	1.2	39
102	Understanding alpine tree line dynamics: An individual-based model. Ecological Modelling, 2008, 218, 235-246.	1.2	63
103	Biodiversity indicators for sustainability monitoring at municipality level: An example of implementation in an alpine region. Ecological Indicators, 2008, 8, 204-223.	2.6	75
104	Ecological and Land Use Studies Along Elevational Gradients. Mountain Research and Development, 2007, 27, 58-65.	0.4	135
105	Land-use changes and natural reforestation in the Eastern Central Alps. Agriculture, Ecosystems and Environment, 2007, 118, 115-129.	2.5	334
106	Short-time effects of land-use changes on O-horizon in subalpine grasslands. Plant and Soil, 2007, 299, 101-115.	1.8	20
107	New model to predict rooting in diverse plant community compositions. Ecological Modelling, 2005, 185, 195-211.	1.2	42
108	Effects of land use in alpine grasslands on the probability of landslides. Basic and Applied Ecology, 2003, 4, 271-280.	1.2	160

7

#	Article	IF	CITATIONS
109	Impact of land use changes on mountain vegetation. Applied Vegetation Science, 2002, 5, 173-184.	0.9	330
110	Site and management effects on soil microbial properties of subalpine meadows: a study of land abandonment along a north–south gradient in the European Alps. Soil Biology and Biochemistry, 2001, 33, 639-649.	4.2	128
111	Are interest groups different in the factors determining landscape preferences?. Landscape Online, 0, 47, 1-18.	0.0	6
112	Enhancing Ecosystem Services Management in Protected Areas Through Participatory System Dynamics Modelling. Landscape Online, 0, 73, 1-17.	0.0	11