List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3389427/publications.pdf Version: 2024-02-01

IEPZY DÁ LICOÁ SKI

#	Article	IF	CITATIONS
1	Malachite green decolorization by non-basidiomycete filamentous fungi of Penicillium pinophilum and Myrothecium roridum. International Biodeterioration and Biodegradation, 2012, 73, 33-40.	3.9	66
2	Emulsifier production by steroid transforming filamentous fungus Curvularia lunata. Growth and product characterization. Journal of Biotechnology, 2002, 92, 287-294.	3.8	59
3	Degradation and toxicity reduction of the endocrine disruptors nonylphenol, 4-tert-octylphenol and 4-cumylphenol by the non-ligninolytic fungus Umbelopsis isabellina. Bioresource Technology, 2016, 200, 223-229.	9.6	55
4	Mechanism study of alachlor biodegradation by Paecilomyces marquandii with proteomic and metabolomic methods. Journal of Hazardous Materials, 2015, 291, 52-64.	12.4	54
5	Biodegradation of 4-n-nonylphenol by the non-ligninolytic filamentous fungus Gliocephalotrichum simplex: A proposal of a metabolic pathway. Journal of Hazardous Materials, 2010, 180, 323-331.	12.4	53
6	Malachite green decolorization by the filamentous fungus Myrothecium roridum – Mechanistic study and process optimization. Bioresource Technology, 2015, 194, 43-48.	9.6	47
7	Tributyltin (TBT) induces oxidative stress and modifies lipid profile in the filamentous fungus Cunninghamella elegans. Environmental Science and Pollution Research, 2014, 21, 4228-4235.	5.3	44
8	Intracellular proteome expression during 4-n-nonylphenol biodegradation by the filamentous fungus Metarhizium robertsii. International Biodeterioration and Biodegradation, 2014, 93, 44-53.	3.9	36
9	Acceleration of tributyltin chloride (TBT) degradation in liquid cultures of the filamentous fungus Cunninghamella elegans. Chemosphere, 2006, 62, 3-8.	8.2	32
10	Detoxification and simultaneous removal of phenolic xenobiotics and heavy metals with endocrine-disrupting activity by the non-ligninolytic fungus Umbelopsis isabellina. Journal of Hazardous Materials, 2018, 360, 661-669.	12.4	32
11	Enhancement of emulsifier production by Curvularia lunata in cadmium, zinc and lead presence. BioMetals, 2007, 20, 797-805.	4.1	31
12	Biodegradation of nonylphenol by a novel entomopathogenic Metarhizium robertsii strain. Bioresource Technology, 2015, 191, 166-172.	9.6	31
13	Lipid peroxidation in the fungus Curvularia lunata exposed to nickel. Archives of Microbiology, 2010, 192, 135-141.	2.2	29
14	Pentachlorophenol and spent engine oil degradation by Mucor ramosissimus. International Biodeterioration and Biodegradation, 2009, 63, 123-129.	3.9	28
15	Alachlor oxidation by the filamentous fungus Paecilomyces marquandii. Journal of Hazardous Materials, 2013, 261, 443-450.	12.4	28
16	Biodegradation and utilization of 4-n-nonylphenol by Aspergillus versicolor as a sole carbon and energy source. Journal of Hazardous Materials, 2014, 280, 678-684.	12.4	28
17	Efficient alachlor degradation by the filamentous fungus Paecilomyces marquandii with simultaneous oxidative stress reduction. Bioresource Technology, 2015, 197, 404-409.	9.6	28
18	Effect of nickel, copper, and zinc on emulsifier production and saturation of cellular fatty acids in the filamentous fungus Curvularia lunata. International Biodeterioration and Biodegradation, 2009, 63, 100-105.	3.9	27

#	Article	IF	CITATIONS
19	Butyltins degradation by Cunninghamella elegans and Cochliobolus lunatus co-culture. Journal of Hazardous Materials, 2013, 246-247, 277-282.	12.4	26
20	Efficient Zn2+ and Pb2+ uptake by filamentous fungus Paecilomyces marquandii with engagement of metal hydrocarbonates precipitation. International Biodeterioration and Biodegradation, 2011, 65, 954-960.	3.9	25
21	Laccase activity of the ascomycete fungus Nectriella pironii and innovative strategies for its production on leaf litter of an urban park. PLoS ONE, 2020, 15, e0231453.	2.5	25
22	Cortexolone 11Î ² -hydroxylation in protoplasts of Curvularia lunata. Journal of Biotechnology, 1998, 65, 217-224.	3.8	24
23	Title is missing!. Biotechnology Letters, 2002, 24, 1971-1974.	2.2	23
24	Concurrent corticosteroid and phenanthrene transformation by filamentous fungus Cunninghamella elegans. Journal of Steroid Biochemistry and Molecular Biology, 2003, 85, 63-69.	2.5	23
25	Tributyltin chloride interactions with fatty acids composition and degradation ability of the filamentous fungus Cunninghamella elegans. International Biodeterioration and Biodegradation, 2007, 60, 133-136.	3.9	22
26	Simultaneous toxic action of zinc and alachlor resulted in enhancement of zinc uptake by the filamentous fungus Paecilomyces marquandii. Science of the Total Environment, 2009, 407, 4127-4133.	8.0	22
27	Deleterious effects of androstenedione on growth and cell morphology of Schizosaccharomyces pombe. , 1998, 73, 189-194.		21
28	Detoxification and elimination of xenoestrogen nonylphenol by the filamentous fungus Aspergillus versicolor. International Biodeterioration and Biodegradation, 2013, 82, 59-66.	3.9	21
29	Analysis of decolorization potential of Myrothecium roridum in the light of its secretome and toxicological studies. Environmental Science and Pollution Research, 2019, 26, 26313-26323.	5.3	21
30	Removal of anthracene and phenanthrene by filamentous fungi capable of cortexolone 11-hydroxylation. Journal of Basic Microbiology, 1999, 39, 117-125.	3.3	20
31	Estradiol improves tributyltin degradation by the filamentous fungus Metarhizium robertsii. International Biodeterioration and Biodegradation, 2015, 104, 258-263.	3.9	20
32	Tributyltin (TBT) biodegradation induces oxidative stress of Cunninghamella echinulata. International Biodeterioration and Biodegradation, 2016, 107, 92-101.	3.9	20
33	Metarhizium robertsii morphological flexibility during nonylphenol removal. International Biodeterioration and Biodegradation, 2014, 95, 285-293.	3.9	19
34	Transformation of steroids by fungal protoplasts. Applied Microbiology and Biotechnology, 1984, 20, 166-169.	3.6	18
35	Synthesis of silver nanoparticles from Metarhizium robertsii waste biomass extract after nonylphenol degradation, and their antimicrobial and catalytic potential. RSC Advances, 2016, 6, 21475-21485.	3.6	18
36	The effect of the corticosteroid hormone cortexolone on the metabolites produced during phenanthrene biotransformation in Cunninghamella elegans. Chemosphere, 2006, 64, 1499-1506.	8.2	15

#	Article	IF	CITATIONS
37	The expression of cytochrome P-450 and cytochrome P-450 reductase genes in the simultaneous transformation of corticosteroids and phenanthrene byCunninghamella elegans. FEMS Microbiology Letters, 2006, 261, 175-180.	1.8	15
38	Adaptive alterations in the fatty acids composition under induced oxidative stress in heavy metal-tolerant filamentous fungus Paecilomyces marquandii cultured in ascorbic acid presence. Environmental Science and Pollution Research, 2013, 20, 3423-3434.	5.3	15
39	Phospholipids and protein adaptation of Pseudomonas sp. to the xenoestrogen tributyltin chloride (TBT). World Journal of Microbiology and Biotechnology, 2014, 30, 2343-2350.	3.6	14
40	Novel laccase-like multicopper oxidases from the fungus Myrothecium roridum - production enhancement, identification and application in dyes removal. Acta Biochimica Polonica, 2018, 65, 287-295.	0.5	14
41	Application of microscopic fungi isolated from polluted industrial areas for polycyclic aromatic hydrocarbons and pentachlorophenol reduction. Biodegradation, 2003, 14, 1-8.	3.0	13
42	Isolation of Streptomyces sp. strain capable of butyltin compounds degradation with high efficiency. Journal of Hazardous Materials, 2009, 171, 660-664.	12.4	13
43	Fungal transformation of 17α-ethinylestradiol in the presence ofÂvarious concentrations of sodium chloride. International Biodeterioration and Biodegradation, 2015, 103, 77-84.	3.9	13
44	Kinetic study of the toxicity of zinc and lead ions to the heavy metals accumulating fungus Paecilomyces marquandii. Bioprocess and Biosystems Engineering, 2005, 28, 185-197.	3.4	12
45	Bacterial elimination of polycyclic aromatic hydrocarbons and heavy metals. Journal of Basic Microbiology, 1998, 38, 361-369.	3.3	11
46	Comparative study of fatty acids composition during cortexolone hydroxylation and tributyltin chloride (TBT) degradation in the filamentous fungus Cunninghamella elegans. International Biodeterioration and Biodegradation, 2012, 74, 1-6.	3.9	11
47	Title is missing!. , 2000, 22, 1699-1704.		10
48	Action of Tributyltin (TBT) on the Lipid Content and Potassium Retention in the Organotins Degradating Fungus Cunninghamella elegans. Current Microbiology, 2009, 59, 315-320.	2.2	10
49	Metabolomics of the recovery of the filamentous fungus Cunninghamella echinulata exposed to tributyltin. International Biodeterioration and Biodegradation, 2018, 127, 130-138.	3.9	10
50	Di(n-butyl) phthalate has no effect on the rat prepubertal testis despite its estrogenic activity in vitro. Folia Histochemica Et Cytobiologica, 2012, 49, 685-689.	1.5	10
51	Environmental and molecular approach to dye industry waste degradation by the ascomycete fungus Nectriella pironii. Scientific Reports, 2021, 11, 23829.	3.3	10
52	Zinc and lead uptake by mycelium and regenerating protoplasts of Verticillium marquandii. World Journal of Microbiology and Biotechnology, 2004, 20, 323-328.	3.6	8
53	Poly-Saturated Dolichols from Filamentous Fungi Modulate Activity of Dolichol-Dependent Glycosyltransferase and Physical Properties of Membranes. International Journal of Molecular Sciences, 2019, 20, 3043.	4.1	8
54	An unstructured model for studies on phenanthrene bioconversion by filamentous fungus Cunninghamella elegans. Enzyme and Microbial Technology, 2006, 39, 1464-1470.	3.2	7

#	Article	IF	CITATIONS
55	Characteristics And Use Of Multicopper Oxidases Enzymes. Postepy Mikrobiologii, 2019, 58, 7-18.	0.1	7
56	Use of Styrene as Sole Carbon Source by the Fungus Exophiala oligosperma: Optimization and Modeling of Biodegradation, Pathway Elucidation, and Cell Membrane Composition. Applied Biochemistry and Biotechnology, 2012, 168, 1351-1371.	2.9	6
57	Utilization of 4-n-nonylphenol by Metarhizium sp. isolates. Acta Biochimica Polonica, 2013, 60, 677-82.	0.5	6
58	A proteomic study of Cunninghamella echinulata recovery during exposure to tributyltin. Environmental Science and Pollution Research, 2019, 26, 32545-32558.	5.3	5
59	Microbial Decolorization of Triphenylmethane Dyes. Environmental Science and Engineering, 2015, , 169-186.	0.2	5
60	Dyes Decolourisation and Degradation by Microorganisms. , 2016, , 119-142.		5
61	Comparative study of metal induced phospholipid modifications in the heavy metal tolerant filamentous fungus Paecilomyces marquandii and implications for the fungal membrane integrity. Acta Biochimica Polonica, 2013, 60, 695-700.	0.5	5
62	Detoxification of phenanthrene by C. elegans evaluated by calorimetry. Thermochimica Acta, 2005, 430, 43-46.	2.7	4
63	Ecotoxicological Estimation of 4-Cumylphenol, 4-t-Octylphenol, Nonylphenol, and Volatile Leachate Phenol Degradation by the Microscopic Fungus Umbelopsis isabellina Using a Battery of Biotests. International Journal of Environmental Research and Public Health, 2022, 19, 4093.	2.6	4
64	Calorimetric detection of the toxic effect of androgens on fission yeast. Thermochimica Acta, 2008, 474, 91-94.	2.7	2
65	Application of Fungal Waste Biomass Originating from Steroid Hormone Manufacture for Heavy Metals Removal. Acta Universitatis Lodziensis Folia Biologica Et Oecologica, 0, 5, 5-19.	1.0	1

66 Microbial Elimination of Endocrine Disrupting Compounds. , 2016, , 99-118.

1