Yong Woo Cho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3389332/publications.pdf

Version: 2024-02-01

YONG WOO CHO

#	Article	IF	CITATIONS
1	Engineered small extracellular vesicles displaying ACE2 variants on the surface protect against SARSâ€CoVâ€2 infection. Journal of Extracellular Vesicles, 2022, 11, e12179.	12.2	24
2	Precipitation-Mediated PEGylation of Plant-Derived Nanovesicles. Macromolecular Research, 2022, 30, 85-89.	2.4	5
3	Adipose stem cell-derived extracellular vesicles ameliorates corticosterone-induced apoptosis in the cortical neurons via inhibition of ER stress. Stem Cell Research and Therapy, 2022, 13, 110.	5.5	4
4	Stem Cell-Derived Extracellular Vesicle-Bearing Dermal Filler Ameliorates the Dermis Microenvironment by Supporting CD301b-Expressing Macrophages. ACS Nano, 2022, 16, 251-260.	14.6	7
5	Engineering approaches for effective therapeutic applications based on extracellular vesicles. Journal of Controlled Release, 2021, 330, 15-30.	9.9	45
6	2D to 3D transformation of gold nanosheets on human adipose-derived α-elastin nanotemplates. Journal of Industrial and Engineering Chemistry, 2021, 95, 66-72.	5.8	0
7	Bioorthogonally surfaceâ€edited extracellular vesicles based on metabolic glycoengineering for CD44â€mediated targeting of inflammatory diseases. Journal of Extracellular Vesicles, 2021, 10, e12077.	12.2	30
8	Metabolically engineered stem cell–derived exosomes to regulate macrophage heterogeneity in rheumatoid arthritis. Science Advances, 2021, 7, .	10.3	100
9	The Antioxidant Effect of Small Extracellular Vesicles Derived from Aloe vera Peels for Wound Healing. Tissue Engineering and Regenerative Medicine, 2021, 18, 561-571.	3.7	45
10	Vitamin A-coupled stem cell-derived extracellular vesicles regulate the fibrotic cascade by targeting activated hepatic stellate cells in vivo. Journal of Controlled Release, 2021, 336, 285-295.	9.9	20
11	Extracellular vesicles from adipose tissueâ€derived stem cells alleviate osteoporosis through osteoprotegerin and <i>miRâ€21â€5p</i> . Journal of Extracellular Vesicles, 2021, 10, e12152.	12.2	74
12	Study and Evaluation of the Potential of Lipid Nanocarriers for Transdermal Delivery of siRNA. Biotechnology Journal, 2020, 15, e2000079.	3.5	7
13	Regeneration of the rotator cuff tendon-to-bone interface using umbilical cord-derived mesenchymal stem cells and gradient extracellular matrix scaffolds from adipose tissue in a rat model. Acta Biomaterialia, 2020, 114, 104-116.	8.3	48
14	Self-Assembling β-Glucan Nanomedicine for the Delivery of siRNA. Biomedicines, 2020, 8, 497.	3.2	6
15	Small extracellular vesicles from human adiposeâ€derived stem cells attenuate cartilage degeneration. Journal of Extracellular Vesicles, 2020, 9, 1735249.	12.2	162
16	Cell reprogramming using extracellular vesicles from differentiating stem cells into white/beige adipocytes. Science Advances, 2020, 6, eaay6721.	10.3	48
17	Potential antiâ€ageing effect of chondroitin sulphate through skin regeneration. International Journal of Cosmetic Science, 2020, 42, 520-527.	2.6	12
18	Human adipose stem cell-derived extracellular nanovesicles for treatment of chronic liver fibrosis. Journal of Controlled Release, 2020, 320, 328-336.	9.9	34

Yong Woo Cho

#	Article	IF	CITATIONS
19	Functional recovery in photoâ€damaged human dermal fibroblasts by human adiposeâ€derived stem cell extracellular vesicles. Journal of Extracellular Vesicles, 2019, 8, 1565885.	12.2	63
20	Reprogramming of cancer stem cells into non-tumorigenic cells using stem cell exosomes for cancer therapy. Biochemical and Biophysical Research Communications, 2019, 512, 511-516.	2.1	21
21	Artificial skin models for animal-free testing. Journal of Pharmaceutical Investigation, 2018, 48, 215-223.	5.3	46
22	Cell-Free Hydrogel System Based on a Tissue-Specific Extracellular Matrix for In Situ Adipose Tissue Regeneration. ACS Applied Materials & Interfaces, 2017, 9, 8581-8588.	8.0	37
23	InÂvivo stem cell tracking with imageable nanoparticles that bind bioorthogonal chemical receptors on the stem cell surface. Biomaterials, 2017, 139, 12-29.	11.4	62
24	Thermo-responsive human α-elastin self-assembled nanoparticles for protein delivery. Colloids and Surfaces B: Biointerfaces, 2017, 149, 122-129.	5.0	19
25	Non-invasive stem cell tracking in hindlimb ischemia animal model using bio-orthogonal copper-free click chemistry. Biochemical and Biophysical Research Communications, 2016, 479, 779-786.	2.1	29
26	ROS-generating TiO2 nanoparticles for non-invasive sonodynamic therapy of cancer. Scientific Reports, 2016, 6, 23200.	3.3	251
27	Injectable and Thermosensitive Soluble Extracellular Matrix and Methylcellulose Hydrogels for Stem Cell Delivery in Skin Wounds. Biomacromolecules, 2016, 17, 4-11.	5.4	93
28	Bioorthogonal Copper Free Click Chemistry for Labeling and Tracking of Chondrocytes <i>In Vivo</i> . Bioconjugate Chemistry, 2016, 27, 927-936.	3.6	53
29	Exosomes from differentiating human skeletal muscle cells trigger myogenesis of stem cells and provide biochemical cues for skeletal muscle regeneration. Journal of Controlled Release, 2016, 222, 107-115.	9.9	138
30	Human Adipose Tissue Derived Extracellular Matrix and Methylcellulose Hydrogels Augments and Regenerates the Paralyzed Vocal Fold. PLoS ONE, 2016, 11, e0165265.	2.5	14
31	An Electrochemical Biosensor Based on a Myoglobin-specific Binding Peptide for Early Diagnosis of Acute Myocardial Infarction. Analytical Sciences, 2015, 31, 699-704.	1.6	38
32	A bilayer composite composed of TiO ₂ -incorporated electrospun chitosan membrane and human extracellular matrix sheet as a wound dressing. Journal of Biomaterials Science, Polymer Edition, 2015, 26, 841-854.	3.5	77
33	Induced Phenotype Targeted Therapy: Radiation-Induced Apoptosis-Targeted Chemotherapy. Journal of the National Cancer Institute, 2015, 107, .	6.3	55
34	Cell Labeling and Tracking Method without Distorted Signals by Phagocytosis of Macrophages. Theranostics, 2014, 4, 420-431.	10.0	57
35	Molecular imaging for In vivo tracking of stem cell fate. Macromolecular Research, 2014, 22, 1141-1151.	2.4	2
36	Adipose tissue: A valuable resource of biomaterials for soft tissue engineering. Macromolecular Research, 2014, 22, 932-947.	2.4	21

YONG WOO CHO

#	Article	IF	CITATIONS
37	Stem cell delivery systems inspired by tissue-specific niches. Journal of Controlled Release, 2014, 193, 42-50.	9.9	27
38	Human collagen-based multilayer scaffolds for tendon-to-bone interface tissue engineering. Journal of Biomedical Materials Research - Part A, 2014, 102, 4044-4054.	4.0	68
39	Complex adaptive therapeutic strategy (CATS) for cancer. Journal of Controlled Release, 2014, 175, 43-47.	9.9	19
40	Human gelatin tissue-adhesive hydrogels prepared by enzyme-mediated biosynthesis of DOPA and Fe ³⁺ ion crosslinking. Journal of Materials Chemistry B, 2014, 2, 201-209.	5.8	148
41	Three-dimensional porous HPMA-co-DMAEM hydrogels for biomedical application. Colloid and Polymer Science, 2013, 291, 1121-1133.	2.1	10
42	Porous Three-Dimensional PVA/Gelatin Sponge for Skin Tissue Engineering. International Journal of Polymeric Materials and Polymeric Biomaterials, 2013, 62, 384-389.	3.4	76
43	Full-Thickness Skin Wound Healing Using Human Placenta-Derived Extracellular Matrix Containing Bioactive Molecules. Tissue Engineering - Part A, 2013, 19, 329-339.	3.1	115
44	Decellularized Extracellular Matrix Derived from Porcine Adipose Tissue as a Xenogeneic Biomaterial for Tissue Engineering. Tissue Engineering - Part C: Methods, 2012, 18, 866-876.	2.1	104
45	<i>In Vitro</i> Cartilage Tissue Engineering Using Adipose-Derived Extracellular Matrix Scaffolds Seeded with Adipose-Derived Stem Cells. Tissue Engineering - Part A, 2012, 18, 80-92.	3.1	47
46	Human collagen isolated from adipose tissue. Biotechnology Progress, 2012, 28, 973-980.	2.6	27
47	Arbitrary, complex cell patterning via inkjet printing of a cell membrane-anchoring polymer. Macromolecular Research, 2012, 20, 528-533.	2.4	1
48	Recellularization of decellularized human adipose-tissue-derived extracellular matrix sheets with other human cell types. Cell and Tissue Research, 2012, 348, 559-567.	2.9	54
49	Fabrication of drug-loaded polymer microparticles with arbitrary geometries using a piezoelectric inkjet printing system. International Journal of Pharmaceutics, 2012, 427, 305-310.	5.2	125
50	A Glucose Sensor Fabricated by Piezoelectric Inkjet Printing of Conducting Polymers and Bienzymes. Analytical Sciences, 2011, 27, 375-379.	1.6	55
51	Electrochemical endotoxin sensors based on TLR4/MD-2 complexes immobilized on gold electrodes. Biosensors and Bioelectronics, 2011, 28, 139-145.	10.1	46
52	In vitro expansion of human adipose-derived stem cells in a spinner culture system using human extracellular matrix powders. Cell and Tissue Research, 2011, 345, 415-423.	2.9	20
53	Decellularized extracellular matrix derived from human adipose tissue as a potential scaffold for allograft tissue engineering. Journal of Biomedical Materials Research - Part A, 2011, 97A, 292-299.	4.0	116
54	Polycation gene delivery systems: escape from endosomes to cytosol. Journal of Pharmacy and Pharmacology, 2010, 55, 721-734.	2.4	319

YONG WOO CHO

#	Article	IF	CITATIONS
55	Piezoelectric inkjet printing of polymers: Stem cell patterning on polymer substrates. Polymer, 2010, 51, 2147-2154.	3.8	172
56	Cyclotriphosphazene-Pt-DACH Conjugates with Dipeptide Spacers for Drug Delivery Systems. Journal of Bioactive and Compatible Polymers, 2010, 25, 274-291.	2.1	8
57	Fabrication of Porous Extracellular Matrix Scaffolds from Human Adipose Tissue. Tissue Engineering - Part C: Methods, 2010, 16, 387-396.	2.1	67
58	Improvement of Stem Cell Viability in Hyaluronic Acid Hydrogels Using Dextran Microspheres. Journal of Biomaterials Science, Polymer Edition, 2010, 21, 1701-1711.	3.5	13
59	Construction of Micro-Patterned Polymer Structures by Piezoelectric Inkjet Printing. Polymer-Plastics Technology and Engineering, 2009, 48, 1318-1323.	1.9	11
60	Fabrication of precisely controlled silicon wire and cone arrays by electrochemical etching. Materials Letters, 2009, 63, 2567-2569.	2.6	18
61	Human extracellular matrix (ECM) powders for injectable cell delivery and adipose tissue engineering. Journal of Controlled Release, 2009, 139, 2-7.	9.9	162
62	Hydrotropic oligomer-conjugated glycol chitosan as a carrier of paclitaxel: Synthesis, characterization, and in vivo biodistribution. Journal of Controlled Release, 2009, 140, 210-217.	9.9	87
63	Facile preparation of biodegradable glycol chitosan hydrogels using divinyladipate as a crosslinker. Macromolecular Research, 2009, 17, 734-738.	2.4	10
64	Polymer inkjet printing: Construction of three-dimensional structures at micro-scale by repeated lamination. Macromolecular Research, 2009, 17, 197-202.	2.4	30
65	Electrochemical Nucleation of SiO _{<i>x</i>} Nanoparticles into the Pore Bottoms of an Anodic Aluminum Oxide. Journal of Nanoscience and Nanotechnology, 2009, 9, 2603-2606.	0.9	3
66	Tumoral accumulation of long-circulating, self-assembled nanoparticles and its visualization by gamma scintigraphy. Macromolecular Research, 2008, 16, 15-20.	2.4	13
67	Regioselective succinylation and gelation behavior of glycol chitosan. Macromolecular Research, 2008, 16, 57-61.	2.4	10
68	Hydrotropic Polymeric Micelles for Enhanced Paclitaxel Solubility:Â In Vitro and In Vivo Characterization. Biomacromolecules, 2007, 8, 202-208.	5.4	183
69	In vivo tumor targeting and radionuclide imaging with self-assembled nanoparticles: Mechanisms, key factors, and their implications. Biomaterials, 2007, 28, 1236-1247.	11.4	109
70	In vitro cellular uptake and cytotoxicity of paclitaxel-loaded glycol chitosan self-assembled nanoparticles. Macromolecular Research, 2007, 15, 513-519.	2.4	21
71	Size control of self-assembled nanoparticles by an emulsion/solvent evaporation method. Colloid and Polymer Science, 2006, 284, 506-512.	2.1	60
72	Preparation and characterization of self-assembled nanoparticles based on glycol chitosan bearing adriamycin. Colloid and Polymer Science, 2006, 284, 763-770.	2.1	47

Yong Woo Cho

#	Article	IF	CITATIONS
73	Preparation and characterization of cisplatin-incorporated chitosan hydrogels, microparticles, and nanoparticles. Macromolecular Research, 2006, 14, 573-578.	2.4	34
74	N-acetyl histidine-conjugated glycol chitosan self-assembled nanoparticles for intracytoplasmic delivery of drugs: Endocytosis, exocytosis and drug release. Journal of Controlled Release, 2006, 115, 37-45.	9.9	233
75	Effect of Inorganic and Organic Salts on the Thermogelling Behavior of Poly(organophosphazenes). Macromolecular Chemistry and Physics, 2006, 207, 412-418.	2.2	19
76	Hydrotropic polymer micelle system for delivery of paclitaxel. Journal of Controlled Release, 2005, 101, 59-68.	9.9	266
77	Novel Thermosensitive 5-Fluorouracilâ^'Cyclotriphosphazene Conjugates:  Synthesis, Thermosensitivity, Degradability, and in Vitro Antitumor Activity. Bioconjugate Chemistry, 2005, 16, 1529-1535.	3.6	30
78	Hydrotropic agents for study of in vitro paclitaxel release from polymeric micelles. Journal of Controlled Release, 2004, 97, 249-257.	9.9	155
79	Biodistribution and anti-tumor efficacy of doxorubicin loaded glycol-chitosan nanoaggregates by EPR effect. Journal of Controlled Release, 2003, 91, 135-145.	9.9	266
80	Porous chitosan scaffold containing microspheres loaded with transforming growth factor-β1: Implications for cartilage tissue engineering. Journal of Controlled Release, 2003, 91, 365-374.	9.9	270
81	Gentamicin-releasing urethral catheter for short-term catheterization. Journal of Biomaterials Science, Polymer Edition, 2003, 14, 963-972.	3.5	34
82	Norfloxacin-releasing urethral catheter for long-term catheterization. Journal of Biomaterials Science, Polymer Edition, 2003, 14, 951-962.	3.5	41
83	Assessment of PEO/PTMO multiblock copolymer/segmented polyurethane blends as coating materials for urinary catheters: in vitro bacterial adhesion and encrustation behavior. Biomaterials, 2002, 23, 3991-4000.	11.4	59
84	PECylation: Camouflage of Proteins, Cells, and Nanoparticles Against Recognition by the Body's Defense Mechanism. , 0, , 443-461.		3
85	Regeneration of Tendon-to-Bone Interface of Rotator Cuff with Umbilical Cord Derived Mesenchymal Stem Cells and Gradient Extracellular Matrix Scaffolds from Adipose Tissue in a Rat Model. SSRN Electronic Journal, 0, , .	0.4	1