
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3389221/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of long non-coding RNAs in Verticillium dahliae following inoculation of cotton. Microbiological Research, 2022, 257, 126962.	2.5	4
2	The Verticillium dahliae Spt-Ada-Gcn5 Acetyltransferase Complex Subunit Ada1 Is Essential for Conidia and Microsclerotia Production and Contributes to Virulence. Frontiers in Microbiology, 2022, 13, 852571.	1.5	5
3	Verticillium dahliae CFEM proteins manipulate host immunity and differentially contribute to virulence. BMC Biology, 2022, 20, 55.	1.7	19
4	Mapping Quantitative Trait Loci for Lettuce Resistance to <i>Verticillium dahliae</i> Race 3, Plant Development, and Leaf Color Using an Ultra-High-Density Bin Map Constructed from F ₂ Progeny. PhytoFrontiers, 2022, 2, 257-267.	0.8	3
5	A secreted ribonuclease effector from <i>Verticillium dahliae</i> localizes in the plant nucleus to modulate host immunity. Molecular Plant Pathology, 2022, 23, 1122-1140.	2.0	15
6	The secretome of <i>Verticillium dahliae</i> in collusion with plant defence responses modulates <scp>Verticillium</scp> wilt symptoms. Biological Reviews, 2022, 97, 1810-1822.	4.7	15
7	A polyketide synthase from Verticillium dahliae modulates melanin biosynthesis and hyphal growth to promote virulence. BMC Biology, 2022, 20, .	1.7	11
8	Genome Sequence Data of MAT1-1 and MAT1-2 Idiomorphs from Verticillium dahliae. Phytopathology, 2021, , PHYTO01210012A.	1.1	1
9	<i>>Verticillium klebahnii</i> and <i>>V. isaacii</i> Isolates Exhibit Host-Dependent Biological Control of Verticillium Wilt Caused by <i>>V. dahliae</i> . PhytoFrontiers, 2021, 1, 276-290.	0.8	9
10	Genetics of Partial Resistance Against <i>Verticillium dahliae</i> Race 2 in Wild and Cultivated Lettuce. Phytopathology, 2021, 111, 842-849.	1.1	12
11	The Whole Genome Sequence of Fusarium redolens strain YPO4, a Pathogen that Causes Root Rot of American Ginseng. Phytopathology, 2021, , PHYTO03210084A.	1.1	2
12	Cytotoxic function of xylanase VdXyn4 in the plant vascular wilt pathogen <i>Verticillium dahliae</i> . Plant Physiology, 2021, 187, 409-429.	2.3	27
13	Dynamics of Verticillium dahliae race 1 population under managed agricultural ecosystems. BMC Biology, 2021, 19, 131.	1.7	1
14	Cu/Zn superoxide dismutase (VdSOD1) mediates reactive oxygen species detoxification and modulates virulence in <i>Verticillium dahliae</i> . Molecular Plant Pathology, 2021, 22, 1092-1108.	2.0	17
15	Biological Characteristics of Verticillium dahliae MAT1-1 and MAT1-2 Strains. International Journal of Molecular Sciences, 2021, 22, 7148.	1.8	2
16	Key Insights and Research Prospects at the Dawn of the Population Genomics Era for Verticillium dahliae. Annual Review of Phytopathology, 2021, 59, 31-51.	3.5	16
17	White rot of <i>Panax quinquefolius</i> caused by <i>Sclerotinia nivalis</i> . Plant Pathology, 2021, 70, 2034-2045.	1.2	2
18	Functional Genomics and Comparative Lineage-Specific Region Analyses Reveal Novel Insights into Race Divergence in Verticillium dahliae. Microbiology Spectrum, 2021, 9, e0111821.	1.2	7

#	Article	IF	CITATIONS
19	Measurements of Aerial Spore Load by qPCR Facilitates Lettuce Downy Mildew Risk Advisement. Plant Disease, 2020, 104, 82-93.	0.7	23
20	Genome Sequence of <i>Verticillium dahliae</i> Race 1 Isolate VdLs.16 From Lettuce. Molecular Plant-Microbe Interactions, 2020, 33, 1265-1269.	1.4	4
21	Hormone Signaling and Its Interplay With Development and Defense Responses in Verticillium-Plant Interactions. Frontiers in Plant Science, 2020, 11, 584997.	1.7	27
22	Functional analyses of small secreted cysteineâ€rich proteins identified candidate effectors in <i>Verticillium dahliae</i> . Molecular Plant Pathology, 2020, 21, 667-685.	2.0	46
23	The Arabidopsis SENESCENCE-ASSOCIATED GENE 13 Regulates Dark-Induced Senescence and Plays Contrasting Roles in Defense Against Bacterial and Fungal Pathogens. Molecular Plant-Microbe Interactions, 2020, 33, 754-766.	1.4	26
24	Genome Sequences of <i>Verticillium dahliae</i> Defoliating Strain XJ592 and Nondefoliating Strain XJ511. Molecular Plant-Microbe Interactions, 2020, 33, 565-568.	1.4	5
25	The LsVe1L allele provides a molecular marker for resistance to Verticillium dahliae race 1 in lettuce. BMC Plant Biology, 2019, 19, 305.	1.6	13
26	Proteome and metabolome analyses reveal differential responses in tomato -Verticillium dahliae-interactions. Journal of Proteomics, 2019, 207, 103449.	1.2	51
27	The <i>Verticillium dahliae</i> Sho1â€MAPK pathway regulates melanin biosynthesis and is required for cotton infection. Environmental Microbiology, 2019, 21, 4852-4874.	1.8	36
28	The genetics of resistance to lettuce drop (Sclerotinia spp.) in lettuce in a recombinant inbred line population from Reine des Glaces × Eruption. Theoretical and Applied Genetics, 2019, 132, 2439-2460	. 1.8	25
29	Arabidopsis defense mutant ndr1-1 displays accelerated development and early flowering mediated by the hormone gibberellic acid. Plant Science, 2019, 285, 200-213.	1.7	9
30	The <i>Gossypium hirsutum</i> TIRâ€NBS‣RR gene <i>GhDSC1 </i> mediates resistance against Verticillium wilt. Molecular Plant Pathology, 2019, 20, 857-876.	2.0	46
31	Spinach Downy Mildew: Advances in Our Understanding of the Disease Cycle and Prospects for Disease Management. Plant Disease, 2019, 103, 791-803.	0.7	38
32	Population genomics demystifies the defoliation phenotype in the plant pathogen <i>Verticillium dahliae</i> . New Phytologist, 2019, 222, 1012-1029.	3.5	41
33	Assessment of Resistance in Potato Cultivars to Verticillium Wilt Caused by <i>Verticillium dahliae</i> and <i>Verticillium nonalfalfae</i> . Plant Disease, 2019, 103, 1357-1362.	0.7	9
34	Harvest of Lettuce from Verticillium-Infested Fields Has Little Impact on Postharvest Quality. Plant Disease, 2019, 103, 668-676.	0.7	2
35	Genetic Diversity of Verticillium dahliae Populations From Olive and Potato in Lebanon. Plant Disease, 2019, 103, 656-667.	0.7	6
36	Release of Three Iceberg Lettuce Populations with Combined Resistance to Two Soilborne Diseases. Hortscience: A Publication of the American Society for Hortcultural Science, 2018, 53, 247-250.	0.5	6

#	Article	IF	CITATIONS
37	Verticillium Wilt Caused by Verticillium dahliae and V. nonalfalfae in Potato in Northern China. Plant Disease, 2018, 102, 1958-1964.	0.7	17
38	Detection of Latent <i>Peronospora effusa</i> Infections in Spinach. Plant Disease, 2018, 102, 1766-1771.	0.7	12
39	SNARE-Encoding Genes VdSec22 and VdSso1 Mediate Protein Secretion Required for Full Virulence in Verticillium dahliae. Molecular Plant-Microbe Interactions, 2018, 31, 651-664.	1.4	39
40	<i>Verticillium dahliae</i> transcription factor VdFTF1 regulates the expression of multiple secreted virulence factors and is required for full virulence in cotton. Molecular Plant Pathology, 2018, 19, 841-857.	2.0	51
41	A Review of Control Options and Externalities for Verticillium Wilts. Phytopathology, 2018, 108, 160-171.	1.1	28
42	The island cotton NBSâ€LRR gene <i>GbaNA1</i> confers resistance to the nonâ€race 1 <i>Verticillium dahliae</i> isolate Vd991. Molecular Plant Pathology, 2018, 19, 1466-1479.	2.0	48
43	A <i>Verticillium dahliae</i> Extracellular Cutinase Modulates Plant Immune Responses. Molecular Plant-Microbe Interactions, 2018, 31, 260-273.	1.4	66
44	Comparative genomics reveals cottonâ€specific virulence factors in flexible genomic regions in <i>Verticillium dahliae</i> and evidence of horizontal gene transfer from <i>Fusarium</i> . New Phytologist, 2018, 217, 756-770.	3.5	91
45	Soil Microbiomes Associated with Verticillium Wilt-Suppressive Broccoli and Chitin Amendments are Enriched with Potential Biocontrol Agents. Phytopathology, 2018, 108, 31-43.	1.1	71
46	Genome-Wide Identification and Functional Analyses of the CRK Gene Family in Cotton Reveals GbCRK18 Confers Verticillium Wilt Resistance in Gossypium barbadense. Frontiers in Plant Science, 2018, 9, 1266.	1.7	30
47	Volatile Compounds Emitted by Diverse <i>Verticillium</i> Species Enhance Plant Growth by Manipulating Auxin Signaling. Molecular Plant-Microbe Interactions, 2018, 31, 1021-1031.	1.4	36
48	Heterologous Expression of the Cotton NBS-LRR Gene GbaNA1 Enhances Verticillium Wilt Resistance in Arabidopsis. Frontiers in Plant Science, 2018, 9, 119.	1.7	36
49	<i>>Verticillium dahliae</i> manipulates plant immunity by glycoside hydrolase 12 proteins in conjunction with carbohydrateâ€binding module 1. Environmental Microbiology, 2017, 19, 1914-1932.	1.8	142
50	Delayed Foliar Symptoms Caused by Verticillium dahliae as an Alternative Resistance Trait in Iceberg Lettuce. Hortscience: A Publication of the American Society for Hortcultural Science, 2017, 52, 513-519.	0.5	1
51	Spatiotemporal Patterns in the Airborne Dispersal of Spinach Downy Mildew. Phytopathology, 2017, 107, 50-58.	1.1	10
52	Genetics of resistance in lettuce to races 1 and 2 of Verticillium dahliae from different host species. Euphytica, 2017, 213, 1.	0.6	16
53	Races of the Celery Pathogen <i>Fusarium oxysporum</i> f. sp. <i>apii</i> Are Polyphyletic. Phytopathology, 2017, 107, 463-473.	1.1	44
54	A Framework for Optimizing Phytosanitary Thresholds in Seed Systems. Phytopathology, 2017, 107, 1219-1228.	1.1	18

#	Article	IF	CITATIONS
55	Short-Term Host Selection Pressure Has Little Effect on the Evolution of a Monoclonal Population of <i>>Verticillium dahliae</i> > Race 1. Phytopathology, 2017, 107, 1417-1425.	1.1	7
56	Vayg1 is required for microsclerotium formation and melanin production in Verticillium dahliae. Fungal Genetics and Biology, 2017, 98, 1-11.	0.9	46
57	The economics of managing Verticillium wilt, an imported disease in California lettuce. California Agriculture, 2017, 71, 178-183.	0.5	5
58	<i>Verticillium longisporum</i> , the invisible threat to oilseed rape and other brassicaceous plant hosts. Molecular Plant Pathology, 2016, 17, 1004-1016.	2.0	93
59	Plasmolysis and Vital Staining Reveal Viable Oospores of <i>Peronospora effusa</i> in Spinach Seed Lots. Plant Disease, 2016, 100, 59-65.	0.7	19
60	Season-Long Dynamics of Spinach Downy Mildew Determined by Spore Trapping and Disease Incidence. Phytopathology, 2016, 106, 1311-1318.	1.1	32
61	Development and Deployment of Systems-Based Approaches for the Management of Soilborne Plant Pathogens. Phytopathology, 2016, 106, 216-225.	1.1	57
62	Non-Fumigant Treatments and Their Combinations Affect Soil Pathogens and Strawberry Performance in Southern California. International Journal of Fruit Science, 2016, 16, 37-46.	1.2	5
63	Detection and Quantification of <i>Bremia lactucae</i> by Spore Trapping and Quantitative PCR. Phytopathology, 2016, 106, 1426-1437.	1.1	39
64	Fumigant dosages below maximum label rate control some soilborne pathogens. California Agriculture, 2016, 70, 130-136.	0.5	5
65	Host Range of <i>Verticillium isaacii</i> and <i>Verticillium klebahnii</i> from Artichoke, Spinach, and Lettuce. Plant Disease, 2015, 99, 933-938.	0.7	23
66	Frequency of <i>Verticillium</i> Species in Commercial Spinach Fields and Transmission of <i>V. dahliae</i> from Spinach to Subsequent Lettuce Crops. Phytopathology, 2015, 105, 80-90.	1.1	25
67	Focus Issue Articles on Emerging and Re-Emerging Plant Diseases. Phytopathology, 2015, 105, 852-854.	1.1	14
68	Screening of Wild and Cultivated <i>Capsicum</i> Germplasm Reveals New Sources of Verticillium Wilt Resistance. Plant Disease, 2015, 99, 1404-1409.	0.7	13
69	Globally invading populations of the fungal plant pathogen <scp><i>V</i></scp> <i>erticillium dahliae</i> are dominated by multiple divergent lineages. Environmental Microbiology, 2015, 17, 2824-2840.	1.8	42
70	Nondefoliating and Defoliating Strains from Cotton Correlate with Races 1 and 2 of <i>Verticillium dahliae</i> . Plant Disease, 2015, 99, 1713-1720.	0.7	42
71	Dynamics of <i>Verticillium</i> Species Microsclerotia in Field Soils in Response to Fumigation, Cropping Patterns, and Flooding. Phytopathology, 2015, 105, 638-645.	1.1	25
72	The Three Lineages of the Diploid Hybrid <i>Verticillium longisporum</i> Differ in Virulence and Pathogenicity. Phytopathology, 2015, 105, 662-673.	1.1	30

#	Article	IF	CITATIONS
73	Characterization of Spinach Germplasm for Resistance Against Two Races of Verticillium dahliae. Hortscience: A Publication of the American Society for Hortcultural Science, 2015, 50, 1631-1635.	0.5	3
74	Maintenance of Sex-Related Genes and the Co-Occurrence of Both Mating Types in Verticillium dahliae. PLoS ONE, 2014, 9, e112145.	1.1	62
75	Coupling Spore Traps and Quantitative PCR Assays for Detection of the Downy Mildew Pathogens of Spinach (<i>Peronospora effusa</i>) and Beet (<i>P. schachtii</i>). Phytopathology, 2014, 104, 1349-1359.	1.1	55
76	Distribution of Lettuce Big-Vein Incidence Under Three Irrigation Systems. Plant Disease, 2014, 98, 206-212.	0.7	0
77	Comparative Pathogenicity, Biocontrol Efficacy, and Multilocus Sequence Typing of <i>Verticillium nonalfalfae</i> from the Invasive <i>Ailanthus altissima</i> and Other Hosts. Phytopathology, 2014, 104, 282-292.	1.1	34
78	A Model for Multiseasonal Spread of Verticillium Wilt of Lettuce. Phytopathology, 2014, 104, 908-917.	1.1	17
79	Verticillium alfalfae and V . dahliae, Agents of Verticillium Wilt Diseases. , 2014, , 65-97.		7
80	The heterothallic sugarbeet pathogen Cercospora beticola contains exon fragments of both MAT genes that are homogenized by concerted evolution. Fungal Genetics and Biology, 2014, 62, 43-54.	0.9	15
81	<i>Verticillium</i> Systematics and Evolution: How Confusion Impedes Verticillium Wilt Management and How to Resolve It. Phytopathology, 2014, 104, 564-574.	1.1	173
82	Mycoparasitism of Phakopsora pachyrhizi, the soybean rust pathogen, by Simplicillium lanosoniveum. Biological Control, 2014, 76, 87-94.	1.4	21
83	<i>Verticillium dahliae</i> Race 2-Specific PCR Reveals a High Frequency of Race 2 Strains in Commercial Spinach Seed Lots and Delineates Race Structure. Phytopathology, 2014, 104, 779-785.	1.1	49
84	Clonal Expansion of <i>Verticillium dahliae</i> in Lettuce. Phytopathology, 2014, 104, 641-649.	1.1	26
85	Finding needles in haystacks: linking scientific names, reference specimens and molecular data for Fungi. Database: the Journal of Biological Databases and Curation, 2014, 2014, bau061-bau061.	1.4	272
86	Recent Developments on Strawberry Plant Collapse Problems in California Caused by <i>Fusarium</i> and <i>Macrophomina</i> . International Journal of Fruit Science, 2013, 13, 76-83.	1.2	32
87	Colonization of Spinach by <i>Verticillium dahliae</i> and Effects of Pathogen Localization on the Efficacy of Seed Treatments. Phytopathology, 2013, 103, 268-280.	1.1	31
88	TIF film, substrates and nonfumigant soil disinfestation maintain fruit yields. California Agriculture, 2013, 67, 139-146.	0.5	28
89	The Sclerotinia sclerotiorum Mating Type Locus (MAT) Contains a 3.6-kb Region That Is Inverted in Every Meiotic Generation. PLoS ONE, 2013, 8, e56895.	1.1	43
90	Identification and Differentiation of Verticillium Species and V. longisporum Lineages by Simplex and Multiplex PCR Assays. PLoS ONE, 2013, 8, e65990.	1.1	80

#	Article	IF	CITATIONS
91	Steam as a Preplant Soil Disinfestant Tool in California Cut-flower Production. HortTechnology, 2013, 23, 207-214.	0.5	10
92	Sources of <i>Verticillium dahliae</i> Affecting Lettuce. Phytopathology, 2012, 102, 1071-1078.	1.1	26
93	Tomato immune receptor Ve1 recognizes effector of multiple fungal pathogens uncovered by genome and RNA sequencing. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5110-5115.	3.3	491
94	A Real-Time PCR Assay for Detection and Quantification of <i>Verticillium dahliae</i> in Spinach Seed. Phytopathology, 2012, 102, 443-451.	1.1	46
95	Population Biology of Fungal Plant Pathogens. Methods in Molecular Biology, 2012, 835, 333-363.	0.4	5
96	Identification of Fungal Pathogenicity Genes by Agrobacterium tumefaciens-Mediated Transformation. , 2012, , 1-19.		2
97	Effect of Steam and Solarization Treatments on Pest Control, Strawberry Yield, and Economic Returns Relative to Methyl Bromide Fumigation. Hortscience: A Publication of the American Society for Hortcultural Science, 2012, 47, 64-70.	0.5	53
98	Phenological and Phytochemical Changes Correlate with Differential Interactions of Verticillium dahliae with Broccoli and Cauliflower. Phytopathology, 2011, 101, 523-534.	1.1	26
99	SSH reveals a linkage between a senescence-associated protease and Verticillium wilt symptom development in lettuce (Lactuca sativa). Physiological and Molecular Plant Pathology, 2011, 76, 48-58.	1.3	21
100	Phylogenetics and Taxonomy of the Fungal Vascular Wilt Pathogen Verticillium, with the Descriptions of Five New Species. PLoS ONE, 2011, 6, e28341.	1.1	263
101	Interactions Between <i>Coniothyrium minitans</i> and <i>Sclerotinia minor</i> Affect Biocontrol Efficacy of <i>C. minitans</i> . Phytopathology, 2011, 101, 358-366.	1.1	12
102	The Ascomycete Verticillium longisporum Is a Hybrid and a Plant Pathogen with an Expanded Host Range. PLoS ONE, 2011, 6, e18260.	1.1	150
103	Impact of Consumer-Driven Changes to Crop Production Practices on Lettuce Drop Caused by Sclerotinia sclerotiorum and S. minor. Phytopathology, 2011, 101, 340-348.	1.1	5
104	A single recessive gene conferring short leaves in romaineâ€f×â€fLatin type lettuce (<i>Lactuca sativa</i> L.) crosses, and its effect on plant morphology and resistance to lettuce drop caused by <i>Sclerotinia minor</i> Jagger. Plant Breeding, 2011, 130, 388-393.	1.0	7
105	Verticillium tricorpus causing lettuce wilt in Japan differs genetically from California lettuce isolates. Journal of General Plant Pathology, 2011, 77, 17-23.	0.6	15
106	The inheritance of resistance to Verticillium wilt caused by race 1 isolates of Verticillium dahliae in the lettuce cultivar La Brillante. Theoretical and Applied Genetics, 2011, 123, 509-517.	1.8	93
107	Identification of Pathogenicity-Related Genes in the Vascular Wilt Fungus Verticillium dahliae by Agrobacterium tumefaciens-Mediated T-DNA Insertional Mutagenesis. Molecular Biotechnology, 2011, 49, 209-221.	1.3	71
108	Comparative Genomics Yields Insights into Niche Adaptation of Plant Vascular Wilt Pathogens. PLoS Pathogens, 2011, 7, e1002137.	2.1	477

#	Article	IF	CITATIONS
109	Fifteen Years of Verticillium Wilt of Lettuce in America's Salad Bowl: A Tale of Immigration, Subjugation, and Abatement. Plant Disease, 2011, 95, 784-792.	0.7	77
110	Analysis of <i>Verticillium dahliae</i> Suggests a Lack of Correlation Between Genotypic Diversity and Virulence Phenotypes. Plant Disease, 2011, 95, 1224-1232.	0.7	18
111	Selection for Resistance to Verticillium Wilt Caused by Race 2 Isolates of Verticillium dahliae in Accessions of Lettuce (Lactuca sativa L.). Hortscience: A Publication of the American Society for Hortcultural Science, 2011, 46, 201-206.	0.5	19
112	Iceberg Lettuce Breeding Lines with Resistance to Verticillium Wilt Caused by Race 1 Isolates of Verticillium dahliae. Hortscience: A Publication of the American Society for Hortcultural Science, 2011, 46, 501-504.	0.5	13
113	Reduced efficacy of rovral and botran to control Sclerotinia minor in lettuce production in the Salinas Valley may be related to accelerated fungicide degradation in soil. Crop Protection, 2010, 29, 751-756.	1.0	8
114	Population analyses of the vascular plant pathogen Verticillium dahliae detect recombination and transcontinental gene flow. Fungal Genetics and Biology, 2010, 47, 416-422.	0.9	86
115	Molecular Variation Among Isolates of <i>Verticillium dahliae</i> and Polymerase Chain Reaction-Based Differentiation of Races. Phytopathology, 2010, 100, 1222-1230.	1.1	55
116	Assessment of Resistance in Lettuce (Lactuca sativa L.) to Mycelial and Ascospore Infection by Sclerotinia minor Jagger and S. sclerotiorum (Lib.) de Bary. Hortscience: A Publication of the American Society for Hortcultural Science, 2010, 45, 333-341.	0.5	28
117	SM09A and SM09B: Romaine Lettuce Breeding Lines Resistant to Dieback and with Improved Shelf Life. Hortscience: A Publication of the American Society for Hortcultural Science, 2010, 45, 670-672.	0.5	5
118	Diversity, Pathogenicity, and Management of Verticillium Species. Annual Review of Phytopathology, 2009, 47, 39-62.	3.5	624
119	Permanent Genetic Resources added to Molecular Ecology Resources Database 1 May 2009–31 July 2009. Molecular Ecology Resources, 2009, 9, 1460-1466.	2.2	128
120	Mustard and Other Cover Crop Effects Vary on Lettuce Drop Caused by <i>Sclerotinia minor</i> and on Weeds. Plant Disease, 2009, 93, 1019-1027.	0.7	13
121	Comparison of Crop Rotation for Verticillium Wilt Management and Effect on <i>Pythium</i> Species in Conventional and Organic Strawberry Production. Plant Disease, 2009, 93, 519-527.	0.7	36
122	Nonlinear colony extension ofSclerotinia minorandS. sclerotiorum. Mycologia, 2008, 100, 902-910.	0.8	7
123	Characterization of <i>Verticillium dahliae</i> and <i>V. tricorpus</i> Isolates from Lettuce and Artichoke. Plant Disease, 2008, 92, 69-77.	0.7	46
124	Dose Response of Weed Seeds, Plant-Parasitic Nematodes, and Pathogens to Twelve Rates of Metam Sodium in a California Soil. Plant Disease, 2008, 92, 1537-1546.	0.7	30
125	Effects of Soil Temperature, Moisture, and Burial Depths on Carpogenic Germination of <i>Sclerotinia sclerotiorum</i> and <i>S. minor</i> . Phytopathology, 2008, 98, 1144-1152.	1.1	58
126	Comparative Survival of Sclerotia of Sclerotinia minor and S. sclerotiorum. Phytopathology, 2008, 98, 659-665.	1.1	19

#	Article	IF	CITATIONS
127	Colonization of Resistant and Susceptible Lettuce Cultivars by a Green Fluorescent Protein-Tagged Isolate of <i>Verticillium dahliae</i> . Phytopathology, 2008, 98, 871-885.	1.1	148
128	Biocontrol of Lettuce Drop Caused by <i>Sclerotinia sclerotiorum</i> and <i>S. minor</i> in Desert Agroecosystems. Plant Disease, 2008, 92, 1625-1634.	0.7	51
129	Incubation of excised apothecia enhances ascus maturation of Sclerotinia sclerotiorum. Mycologia, 2007, 99, 33-41.	0.8	3
130	Variation for Resistance to Verticillium Wilt in Lettuce (Lactuca sativa L.). Plant Disease, 2007, 91, 439-445.	0.7	56
131	Management of Soilborne Diseases in Strawberry Using Vegetable Rotations. Plant Disease, 2007, 91, 964-972.	0.7	83
132	Dose response of weed seeds and soilborne pathogens to 1,3-D and chloropicrin. Crop Protection, 2007, 26, 535-542.	1.0	37
133	Lettuce Diseases. , 2007, , 313-318.		Ο
134	Phylogenetic Analyses of Phytopathogenic Isolates of Verticillium spp Phytopathology, 2006, 96, 582-592.	1.1	74
135	Dynamics of Lettuce Drop Incidence and Sclerotinia minor Inoculum Under Varied Crop Rotations. Plant Disease, 2006, 90, 269-278.	0.7	7
136	Analyses of Lettuce Drop Incidence and Population Structure of Sclerotinia sclerotiorum and S. minor. Phytopathology, 2006, 96, 1322-1329.	1.1	34
137	Characterization of Race-Specific Interactions Among Isolates of Verticillium dahliae Pathogenic on Lettuce. Phytopathology, 2006, 96, 1380-1387.	1.1	84
138	Phoma Basal Rot of Romaine Lettuce in California Caused by Phoma exigua: Occurrence, Characterization, and Control. Plant Disease, 2006, 90, 1268-1275.	0.7	28
139	Spatial Analysis Based on Variance of Moving Window Averages. Journal of Phytopathology, 2006, 154, 349-360.	O.5	8
140	Comparative Analyses of Lettuce Drop Epidemics Caused by Sclerotinia minor and S. sclerotiorum. Plant Disease, 2005, 89, 717-725.	0.7	34
141	Analyses of the Relationships Between Lettuce Downy Mildew and Weather Variables Using Geographic Information System Techniques. Plant Disease, 2005, 89, 90-96.	0.7	15
142	Weedborne Reservoirs and Seed Transmission of Verticillium dahliae in Lettuce. Plant Disease, 2005, 89, 317-324.	0.7	67
143	Mutations in VMK1, a mitogen-activated protein kinase gene, affect microsclerotia formation and pathogenicity in Verticillium dahliae. Current Genetics, 2005, 48, 109-116.	0.8	103
144	Host resistance stability to downy mildew in pearl millet and pathogenic variability in Sclerospora graminicola. Crop Protection, 2004, 23, 901-908.	1.0	16

#	Article	IF	CITATIONS
145	Comparison of Media for Recovery of Verticillium dahliae from Soil. Plant Disease, 2004, 88, 49-55.	0.7	132
146	Sporulation of Bremia lactucae Affected by Temperature, Relative Humidity, and Wind in Controlled Conditions. Phytopathology, 2004, 94, 396-401.	1.1	27
147	Mustard Cover Crops for Control Soilborne Disease and Weeds, and Nitrogen Cycling in Cool Season Vegetable Production in the Salinas Valley. Hortscience: A Publication of the American Society for Hortcultural Science, 2004, 39, 832C-832.	0.5	0
148	Identification of a locus controlling Verticillium disease symptom response in Arabidopsis thaliana. Plant Journal, 2003, 35, 574-587.	2.8	155
149	Effects of Broccoli Rotation on Lettuce Drop Caused by Sclerotinia minor and on the Population Density of Sclerotia in Soil. Plant Disease, 2003, 87, 159-166.	0.7	48
150	Characterization of Verticillium dahliae Isolates and Wilt Epidemics of Pepper. Plant Disease, 2003, 87, 789-797.	0.7	102
151	Germination of Sclerotinia minor and S. sclerotiorum Sclerotia Under Various Soil Moisture and Temperature Combinations. Phytopathology, 2003, 93, 443-450.	1.1	83
152	Interactions Between Myxobacteria, Plant Pathogenic Fungi, and Biocontrol Agents. Plant Disease, 2002, 86, 889-896.	0.7	104
153	Introduction. Phytopathology, 2002, 92, 1334-1336.	1.1	17
154	The Internet-Based Fungal Pathogen Database: A Proposed Model. Phytopathology, 2002, 92, 232-236.	1.1	11
155	Lettuce, Diseases, Ecology, and Control. , 2002, , .		0
156	Spatial Analysis of Lettuce Downy Mildew Using Geostatistics and Geographic Information Systems. Phytopathology, 2001, 91, 134-142.	1.1	66
157	Reaction of Broccoli to Isolates of Verticillium dahliae from Various Hosts. Plant Disease, 2001, 85, 141-146.	0.7	20
158	Effects of Irrigation and Verticillium dahliae on Cauliflower Root and Shoot Growth Dynamics. Phytopathology, 2000, 90, 995-1004.	1.1	29
159	Mechanism of Broccoli-Mediated Verticillium Wilt Reduction in Cauliflower. Phytopathology, 2000, 90, 305-310.	1.1	58
160	Factors Affecting the Survival of Bremia lactucae Sporangia Deposited on Lettuce Leaves. Phytopathology, 2000, 90, 827-833.	1.1	41
161	Spore Release of Bremia lactucae on Lettuce Is Affected by Timing of Light Initiation and Decrease in Relative Humidity. Phytopathology, 2000, 90, 67-71.	1.1	31
162	Broccoli residues can control Verticillium wilt of cauliflower. California Agriculture, 2000, 54, 30-33.	0.5	15

#	Article	IF	CITATIONS
163	Host Range Specificity in Verticillium dahliae. Phytopathology, 1999, 89, 1218-1225.	1.1	321
164	Evaluation of Broccoli Residue Incorporation into Field Soil for Verticillium Wilt Control in Cauliflower. Plant Disease, 1999, 83, 124-129.	0.7	97
165	Several fungicides control powdery mildew in peppers. California Agriculture, 1999, 53, 40-43.	0.5	7
166	Mechanisms of Subsurface Drip Irrigation-Mediated Suppression of Lettuce Drop Caused by Sclerotinia minor. Phytopathology, 1998, 88, 252-259.	1.1	35
167	Progress Toward Integrated Management Of Lettuce Drop. Plant Disease, 1998, 82, 1068-1078.	0.7	101
168	Effects of Chitin and Chitosan on the Incidence and Severity of Fusarium Yellows of Celery. Plant Disease, 1998, 82, 322-328.	0.7	117
169	Effects of Crop Rotation and Irrigation on Verticillium dahliae Microsclerotia in Soil and Wilt in Cauliflower. Phytopathology, 1998, 88, 1046-1055.	1.1	126
170	Relationships Between Verticillium dahliae Inoculum Density and Wilt Incidence, Severity, and Growth of Cauliflower. Phytopathology, 1998, 88, 1108-1115.	1.1	66
171	Spatial Patterns of Microsclerotia of Verticillium dahliae in Soil and Verticillium Wilt of Cauliflower. Phytopathology, 1997, 87, 325-331.	1.1	51
172	Benefits of Cotton Seed Treatments for the Control of Seedling Diseases in Relation to Inoculum Densities of Pythium Species and Rhizoctonia solani. Plant Disease, 1997, 81, 766-768.	0.7	20
173	Comparison of Lettuce Diseases and Yield Under Subsurface Drip and Furrow Irrigation. Phytopathology, 1997, 87, 877-883.	1.1	44
174	Development and Significance of Dicarboximide Resistance in Sclerotinia minor Isolates from Commercial Lettuce Fields in California. Plant Disease, 1997, 81, 148-153.	0.7	33
175	Effects of Deep Plowing on the Distribution and Density of <i>Sclerotinia minor</i> Sclerotia and Lettuce Drop Incidence. Plant Disease, 1996, 80, 28.	0.7	44
176	Fig Endosepsis: An Old Disease Still a Dilemma for California Growers Plant Disease, 1996, 80, 828.	0.7	31
177	Development of Phenological Scales for Figs and Their Relative Susceptibilities to Endosepsis and Smut. Plant Disease, 1996, 80, 1015.	0.7	8
178	Interactive Effects of Broccoli Residue and Temperature onVerticillium dahliaeMicrosclerotia in Soil and on Wilt in Cauliflower. Phytopathology, 1996, 86, 1303.	1.1	61
179	Verticillium wilt threatens coastal cauliflower crop. California Agriculture, 1996, 50, 24-27.	0.5	3
180	Deep plowing exacerbates lettuce drop in Salinas Valley. California Agriculture, 1996, 50, 30-33.	0.5	2

#	Article	IF	CITATIONS
181	Genetic Relationships and Cross Pathogenicities ofVerticillium dahliaeIsolates from Cauliflower and Other Crops. Phytopathology, 1995, 85, 1105.	1.1	91
182	Verticillium Wilt of Cauliflower in California. Plant Disease, 1994, 78, 1116.	0.7	90
183	Saprotrophic ability of Diaporthe phaseolorum var. caulivora on host and non-host plants, and on abiotic substrates. Mycological Research, 1993, 97, 782-784.	2.5	6
184	Effects of Osmotic Potential and Temperature on Growth of Two Pathogens of Figs and a Biocontrol Agent. Phytopathology, 1993, 83, 1454.	1.1	12
185	A re-evaluation of Fusarium moniliforme var. fici, the causal agent of fig endosepsis. Mycological Research, 1992, 96, 766-768.	2.5	8
186	Cylindrocladiella hahajimaensis, a new species of Cylindrocladiella transferred from Verticillium. MycoKeys, 0, 4, 1-8.	0.8	4