
Mingzhe Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3389113/publications.pdf Version: 2024-02-01

MINCZHE CHEN

#	Article	IF	CITATIONS
1	The Cathode Choice for Commercialization of Sodiumâ€lon Batteries: Layered Transition Metal Oxides versus Prussian Blue Analogs. Advanced Functional Materials, 2020, 30, 1909530.	7.8	276
2	NASICON-type air-stable and all-climate cathode for sodium-ion batteries with low cost and high-power density. Nature Communications, 2019, 10, 1480.	5.8	260
3	Recent Progress of Layered Transition Metal Oxide Cathodes for Sodiumâ€lon Batteries. Small, 2019, 15, e1805381.	5.2	246
4	Highâ€Abundance and Low ost Metalâ€Based Cathode Materials for Sodiumâ€Ion Batteries: Problems, Progress, and Key Technologies. Advanced Energy Materials, 2019, 9, 1803609.	10.2	176
5	Carbon oated Na _{3.32} Fe _{2.34} (P ₂ O ₇) ₂ Cathode Material for Highâ€Rate and Longâ€Life Sodiumâ€Ion Batteries. Advanced Materials, 2017, 29, 1605535	11.1	161
6	Electrochemical energy storage devices working in extreme conditions. Energy and Environmental Science, 2021, 14, 3323-3351.	15.6	140
7	Highly Ambient-Stable 1T-MoS ₂ and 1T-WS ₂ by Hydrothermal Synthesis under High Magnetic Fields. ACS Nano, 2019, 13, 1694-1702.	7.3	131
8	Constructing a Protective Pillaring Layer by Incorporating Gradient Mn ⁴⁺ to Stabilize the Surface/Interfacial Structure of LiNi _{0.815} Co _{0.15} Al _{0.035} O ₂ Cathode. ACS Applied Materials & Interfaces, 2018, 10, 27821-27830.	4.0	113
9	Multiangular Rod-Shaped Na _{0.44} MnO ₂ as Cathode Materials with High Rate and Long Life for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 3644-3652.	4.0	107
10	P2-type Na _{2/3} Ni _{1/3} Mn _{2/3} O ₂ as a cathode material with high-rate and long-life for sodium ion storage. Journal of Materials Chemistry A, 2019, 7, 9215-9221.	5.2	102
11	Construction of 3D pomegranate-like Na ₃ V ₂ (PO ₄) ₃ /conducting carbon composites for high-power sodium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 9833-9841.	5.2	101
12	A Novel Graphene Oxide Wrapped Na ₂ Fe ₂ (SO ₄) ₃ /C Cathode Composite for Long Life and High Energy Density Sodium″on Batteries. Advanced Energy Materials, 2018, 8, 1800944.	10.2	101
13	Development and Investigation of a NASICONâ€Type Highâ€Voltage Cathode Material for Highâ€Power Sodiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2020, 59, 2449-2456.	7.2	101
14	Ultrathin 2D TiS ₂ Nanosheets for High Capacity and Longâ€Life Sodium Ion Batteries. Advanced Energy Materials, 2019, 9, 1803210.	10.2	100
15	Activating a Multielectron Reaction of NASICON-Structured Cathodes toward High Energy Density for Sodium-Ion Batteries. Journal of the American Chemical Society, 2021, 143, 18091-18102.	6.6	96
16	All Carbon Dual Ion Batteries. ACS Applied Materials & amp; Interfaces, 2018, 10, 35978-35983.	4.0	93
17	Recent progress on iron- and manganese-based anodes for sodium-ion and potassium-ion batteries. Energy Storage Materials, 2019, 19, 163-178.	9.5	90
18	Organic Cross‣inker Enabling a 3D Porous Skeleton–Supported Na ₃ V ₂ (PO ₄) ₃ /Carbon Composite for High Power Sodium″on Battery Cathode. Small Methods, 2019, 3, 1800169.	4.6	87

Mingzhe Chen

#	Article	IF	CITATIONS
19	Designing Advanced Vanadiumâ€Based Materials to Achieve Electrochemically Active Multielectron Reactions in Sodium/Potassiumâ€lon Batteries. Advanced Energy Materials, 2020, 10, 2002244.	10.2	79
20	A Cation and Anion Dual Doping Strategy for the Elevation of Titanium Redox Potential for Highâ€Power Sodiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2020, 59, 12076-12083.	7.2	78
21	Lithium/Oxygen Incorporation and Microstructural Evolution during Synthesis of Liâ€Rich Layered Li[Li _{0.2} Ni _{0.2} Mn _{0.6}]O ₂ Oxides. Advanced Energy Materials, 2019, 9, 1803094.	10.2	78
22	Shape-controlled synthesis of hierarchically layered lithium transition-metal oxide cathode materials by shear exfoliation in continuous stirred-tank reactors. Journal of Materials Chemistry A, 2017, 5, 25391-25400.	5.2	67
23	In Situ Grown S Nanosheets on Cu Foam: An Ultrahigh Electroactive Cathode for Room-Temperature Na–S Batteries. ACS Applied Materials & Interfaces, 2017, 9, 24446-24450.	4.0	65
24	Understanding rhombohedral iron hexacyanoferrate with three different sodium positions for high power and long stability sodium-ion battery. Energy Storage Materials, 2020, 30, 42-51.	9.5	62
25	Unravelling the growth mechanism of hierarchically structured Ni1/3Co1/3Mn1/3(OH)2 and their application as precursors for high-power cathode materials. Electrochimica Acta, 2017, 232, 123-131.	2.6	60
26	A nanoarchitectured Na ₆ Fe ₅ (SO ₄) ₈ /CNTs cathode for building a low-cost 3.6ÂV sodium-ion full battery with superior sodium storage. Journal of Materials Chemistry A, 2019, 7, 14656-14669.	5.2	51
27	Synthesis Strategies and Structural Design of Porous Carbonâ€Incorporated Anodes for Sodiumâ€Ion Batteries. Small Methods, 2020, 4, 1900163.	4.6	49
28	Manipulating Molecular Structure and Morphology to Invoke Highâ€Performance Sodium Storage of Copper Phosphide. Advanced Energy Materials, 2020, 10, 1903542.	10.2	38
29	Emerging polyanionic and organic compounds for high energy density, non-aqueous potassium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 16061-16080.	5.2	37
30	Hierarchically Porous MoS ₂ –Carbon Hollow Rhomboids for Superior Performance of the Anode of Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 10402-10409.	4.0	36
31	Hierarchical structured LiMn 0.5 Fe 0.5 PO 4 spheres synthesized by template-engaged reaction as cathodes for high power Li-ion batteries. Electrochimica Acta, 2015, 178, 353-360.	2.6	35
32	Confined synthesis of graphene wrapped LiMn0.5Fe0.5PO4 composite via two step solution phase method as high performance cathode for Li-ion batteries. Journal of Power Sources, 2016, 329, 94-103.	4.0	35
33	Insight into the Origin of Capacity Fluctuation of Na ₂ Ti ₆ O ₁₃ Anode in Sodium Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 43596-43602.	4.0	34
34	Submicrometer porous Li3V2(PO4)3/C composites with high rate electrochemical performance prepared by sol-gel combustion method. Electrochimica Acta, 2014, 137, 489-496.	2.6	32
35	Development and Investigation of a NASICONâ€⊺ype Highâ€Voltage Cathode Material for Highâ€Power Sodiumâ€Ion Batteries. Angewandte Chemie, 2020, 132, 2470-2477.	1.6	26
36	Building High Power Density of Sodium-Ion Batteries: Importance of Multidimensional Diffusion Pathways in Cathode Materials. Frontiers in Chemistry, 2020, 8, 152.	1.8	26

Mingzhe Chen

#	Article	IF	CITATIONS
37	Insight into the Multirole of Graphene in Preparation of High Performance Na _{2+2<i>x</i>} Fe _{2–<i>x</i>} (SO ₄) ₃ Cathodes. ACS Sustainable Chemistry and Engineering, 2018, 6, 16105-16112.	3.2	24
38	Understanding Challenges of Cathode Materials for Sodiumâ€lon Batteries using Synchrotronâ€Based Xâ€Ray Absorption Spectroscopy. Batteries and Supercaps, 2019, 2, 842-851.	2.4	23
39	Regulating Pseudo-Jahn–Teller Effect and Superstructure in Layered Cathode Materials for Reversible Alkali-Ion Intercalation. Journal of the American Chemical Society, 2022, 144, 7929-7938.	6.6	22
40	A Cation and Anion Dual Doping Strategy for the Elevation of Titanium Redox Potential for Highâ€Power Sodiumâ€ion Batteries. Angewandte Chemie, 2020, 132, 12174-12181.	1.6	20
41	Synthesis of LiCr0.2Ni0.4Mn1.4O4 with superior electrochemical performance via a two-step thermo polymerization technique. Electrochimica Acta, 2013, 97, 184-191.	2.6	18
42	Microstructural Investigation into Na-Ion Storage Behaviors of Cellulose-Based Hard Carbons for Na-Ion Batteries. Journal of Physical Chemistry C, 2021, 125, 14559-14566.	1.5	15
43	Oxygen-Deficient P2-Na _{0.7} Mn _{0.75} Ni _{0.25} O _{2â^²<i>x</i>} Cathode by a Reductive NH ₄ HF ₂ Treatment for Highly Reversible Na-Ion Storage. ACS Applied Energy Materials, 2021, 4, 8036-8044.	2.5	15
44	Organic Small Molecules with Electrochemicalâ€Active Phenolic Enolate Groups for Readyâ€toâ€Charge Organic Sodiumâ€lon Batteries. Small Methods, 2022, 6, .	4.6	15
45	The influences of sodium sources on the structure evolution and electrochemical performances of layered-tunnel hybrid Na 0.6 MnO 2 cathode. Ceramics International, 2017, 43, 6303-6311.	2.3	14
46	Screw dislocation-driven t-Ba ₂ V ₂ O ₇ helical meso/nanosquares: microwave irradiation assisted-SDBS fabrication and their unique magnetic properties. Journal of Materials Chemistry C, 2017, 5, 6336-6342.	2.7	13
47	Understanding Performance Differences from Various Synthesis Methods: A Case Study of Spinel LiCr _{0.2} Ni _{0.4} Mn _{1.4} O ₄ Cathode Material. ACS Applied Materials & Interfaces, 2016, 8, 26051-26057.	4.0	12
48	Improved rate and cycle performance of nano-sized 5LiFePO 4 ·Li 3 V 2 (PO 4) 3 /C via high-energy ball milling assisted carbothermal reduction. Journal of Alloys and Compounds, 2017, 719, 281-287.	2.8	12
49	Lithium-rich sulfide/selenide cathodes for next-generation lithium-ion batteries: challenges and perspectives. Chemical Communications, 2022, 58, 3591-3600.	2.2	12
50	Modeling and experimental studies of ammonia absorption in a spray tower. Korean Journal of Chemical Engineering, 2016, 33, 63-72.	1.2	9
51	Facile synthesis of porous Li3V2(PO4)3/C composite and its superior electrochemical performance for lithium ion battery. Materials Letters, 2015, 142, 189-192.	1.3	5
52	Superior sodium storage of Na ₃ V(PO ₃) ₃ N nanofibers as a high voltage cathode for flexible sodium-ion battery devices. Nanotechnology, 2021, 32, 435404.	1.3	5