Beata A Butruk-Raszeja

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3388776/publications.pdf

Version: 2024-02-01

26 papers 538 citations

759233 12 h-index 642732 23 g-index

27 all docs

27 docs citations

times ranked

27

1000 citing authors

#	Article	IF	CITATIONS
1	Surface modification and endothelialization of polyurethane for vascular tissue engineering applications: a review. Biomaterials Science, 2017, 5, 22-37.	5.4	130
2	Fabrication of in-situ foamed chitosan \hat{I}^2 -TCP scaffolds for bone tissue engineering application. Materials Letters, 2012, 85, 124-127.	2.6	61
3	Fabrication of biocompatible hydrogel coatings for implantable medical devices using Fenton-type reaction. Materials Science and Engineering C, 2012, 32, 1601-1609.	7.3	35
4	Fabrication and characterization of chitosan microspheres agglomerated scaffolds for bone tissue engineering. Materials Letters, 2010, 64, 1059-1062.	2.6	32
5	Extreme ultraviolet (EUV) surface modification of polytetrafluoroethylene (PTFE) for control of biocompatibility. Nuclear Instruments & Methods in Physics Research B, 2015, 364, 98-107.	1.4	32
6	Polyvinylpyrrolidone (PVP) hydrogel coating for cylindrical polyurethane scaffolds. Colloids and Surfaces B: Biointerfaces, 2020, 192, 111066.	5.0	29
7	Endothelialization of polyurethanes: Surface silanization and immobilization of REDV peptide. Colloids and Surfaces B: Biointerfaces, 2016, 144, 335-343.	5.0	28
8	Athrombogenic hydrogel coatings for medical devices – Examination of biological properties. Colloids and Surfaces B: Biointerfaces, 2015, 130, 192-198.	5.0	20
9	Dextran/Albumin hydrogel sealant for Dacron $\hat{A}^{@}$ vascular prosthesis. Journal of Biomaterials Applications, 2014, 28, 1386-1396.	2.4	18
10	Electropolymerized hydrophilic coating on stainless steel for biomedical applications. Colloids and Surfaces B: Biointerfaces, 2018, 167, 499-508.	5.0	16
11	Surface Modification of PLLA, PTFE and PVDF with Extreme Ultraviolet (EUV) to Enhance Cell Adhesion. International Journal of Molecular Sciences, 2020, 21, 9679.	4.1	15
12	Evaluation of Sterilization/Disinfection Methods of Fibrous Polyurethane Scaffolds Designed for Tissue Engineering Applications. International Journal of Molecular Sciences, 2020, 21, 8092.	4.1	14
13	Effect of Extreme Ultraviolet (EUV) Radiation and EUV Induced, N2 and O2 Based Plasmas on a PEEK Surface's Physico-Chemical Properties and MG63 Cell Adhesion. International Journal of Molecular Sciences, 2021, 22, 8455.	4.1	14
14	Simple method of fabrication of hydrophobic coatings for polyurethanes. Open Chemistry, 2011, 9, 1039-1045.	1.9	13
15	Fenton-type reaction grafting of polyvinylpyrrolidone onto polypropylene membrane for improving hemo- and biocompatibility. Materials Science and Engineering C, 2020, 113, 110960.	7.3	13
16	Cell membrane-mimicking coating for blood-contacting polyurethanes. Journal of Biomaterials Applications, 2015, 29, 801-812.	2.4	12
17	Polyurethane modification with acrylic acid by Ce(IV)-initiated graft polymerization. Open Chemistry, 2016, 14, 206-214.	1.9	10
18	Endothelial cell growth on polyurethane modified with acrylic acid and REDV peptide. Surface Innovations, 2020, 8, 89-104.	2.3	10

#	Article	IF	CITATIONS
19	Surface Endothelialization of Polyurethanes. Procedia Engineering, 2013, 59, 126-132.	1.2	9
20	Polyvinylpyrrolidone-Based Coatings for Polyurethanes $\hat{a}\in$ The Effect of Reagent Concentration on Their Chosen Physical Properties. Chemical and Process Engineering - Inzynieria Chemiczna I Procesowa, 2012, 33, 563-571.	0.7	6
21	Physicochemical and Mechanical Properties of Blow Spun Nanofibrous Prostheses Modified with Acrylic Acid and REDV Peptide. Coatings, 2020, 10, 1110.	2.6	5
22	Vascular Polyurethane Prostheses Modified with a Bioactive Coating—Physicochemical, Mechanical and Biological Properties. International Journal of Molecular Sciences, 2021, 22, 12183.	4.1	5
23	Cylindrical Polyurethane Scaffold Fabricated Using the Phase Inversion Method: Influence of Process Parameters on Scaffolds' Morphology and Mechanical Properties. Materials, 2021, 14, 2977.	2.9	4
24	Determination of polyurethane-grafted peptide (GSGREDVGSG) using bicinchoninic acid assay. BioTechniques, 2018, 64, 245-253.	1.8	3
25	The effect of surface morphology on endothelial and smooth muscle cells growth on blow-spun fibrous scaffolds. Journal of Biological Engineering, 2021, 15, 27.	4.7	1
26	Nanostructural haemocompatible coatings for the internal side of artificial blood vessels. IOP Conference Series: Materials Science and Engineering, 2016, 119, 012030.	0.6	0