
Takaaki Sumiyoshi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3388409/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Discovery of Benzylpiperazine Derivatives as CNS-Penetrant and Selective Histone Deacetylase 6 Inhibitors. ACS Medicinal Chemistry Letters, 2022, 13, 1077-1082.	2.8	3
2	A novel piperidine degradation mechanism in a newly isolated piperidine degrader <i>Pseudomonas</i> sp. strain KU43P. Journal of General and Applied Microbiology, 2020, 66, 265-272.	0.7	4
3	Identification and Quantification of Short-Chain Aldehydes Generated from Hair by Ultraviolet Ray Irradiation. Journal of Society of Cosmetic Chemists of Japan, 2020, 54, 169-176.	0.1	0
4	Nano-Honeycomb Electrode-Based QCM Sensor and Its Application for PPI Detection. IEEE Sensors Journal, 2019, 19, 4025-4030.	4.7	3
5	Design, synthesis and evaluations of spiroâ€fused benzoxaborin derivatives as novel boronâ€containing compounds. Chemical Biology and Drug Design, 2019, 93, 657-665.	3.2	12
6	Foreword. Chemical and Pharmaceutical Bulletin, 2018, 66, 20-20.	1.3	0
7	Design, Synthesis, and Blood–Brain Barrier Transport Study of Pyrilamine Derivatives as Histone Deacetylase Inhibitors. ACS Medicinal Chemistry Letters, 2018, 9, 884-888.	2.8	22
8	Synthesis of Substituted t-Butyl 3-Alkyloxindole-3-carboxylates from Di-t-butyl (2-Nitrophenyl)malonates. Heterocycles, 2018, 97, 192.	0.7	2
9	Process Development for the Synthesis of a Selective M ₁ and M ₄ Muscarinic Acetylcholine Receptors Agonist. Organic Process Research and Development, 2017, 21, 1610-1615.	2.7	2
10	Discovery of new low-molecular-weight p53–Mdmx disruptors and their anti-cancer activities. Bioorganic and Medicinal Chemistry, 2016, 24, 1919-1926.	3.0	14
11	Discovery of dihydroquinazolinone derivatives as potent, selective, and CNS-penetrant M1 and M4 muscarinic acetylcholine receptors agonists. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 5357-5361.	2.2	15
12	Discovery of N-substituted 7-azaindoline derivatives as potent, orally available M1 and M4 muscarinic acetylcholine receptors selective agonists. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 3189-3193.	2.2	14
13	Identification of 2,3-disubstituted pyridines as potent, non-emetic PDE4 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 2689-2692.	2.2	3
14	Syntheses of [14C]-labeled 2-(3-chlorophenyloxy)-3-[3-(3-hydroxy) pyridin-4-yl propoxy]pyridine, a phosphodiesterase 4 inhibitor and its metabolites. Journal of Labelled Compounds and Radiopharmaceuticals, 2014, 57, 477-479.	1.0	0
15	Discovery of N-sulfonyl-7-azaindoline derivatives as potent, orally available and selective M4 muscarinic acetylcholine receptor agonists. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 2909-2912.	2.2	12
16	Identification of N-substituted 8-azatetrahydroquinolone derivatives as selective and orally active M1 and M4 muscarinic acetylcholine receptors agonists. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 4644-4647.	2.2	11
17	Experimental and computational study of intermolecular migration of N,N-dimethylcarbamoyl group from N(7) to N(1) on a 7-azaindoline derivative. Tetrahedron, 2013, 69, 9675-9681.	1.9	5
18	ldentification of 2,3-disubstituted pyridines as potent, orally active PDE4 inhibitors. Bioorganic and Medicinal Chemistry, 2013, 21, 5851-5854.	3.0	4

#	Article	IF	CITATIONS
19	Discovery of Novel <i>N</i> -Substituted Oxindoles as Selective M ₁ and M ₄ Muscarinic Acetylcholine Receptors Partial Agonists. ACS Medicinal Chemistry Letters, 2013, 4, 244-248.	2.8	20