Alexandre Bes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3388297/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Diamond detectors for high energy physics experiments. Journal of Instrumentation, 2018, 13, C01029-C01029.	1.2	42
2	Multi-dipolar microwave plasmas and their application to negative ion production. Physics of Plasmas, 2013, 20, .	1.9	39
3	Characterization of high density matrix microwave argon plasmas by laser absorption and electric probe diagnostics. Journal Physics D: Applied Physics, 2007, 40, 5177-5186.	2.8	25
4	MgH 2 thin films deposited by one-step reactive plasma sputtering. International Journal of Hydrogen Energy, 2014, 39, 17718-17725.	7.1	17
5	Deposition of thin films of Mg2Si1â^xxSnx solid solution by plasma-assisted co-sputtering. Journal of Alloys and Compounds, 2012, 538, 73-78.	5.5	15
6	A study of the radiation tolerance of poly-crystalline and single-crystalline CVD diamond to 800 MeV and 24 GeV protons. Journal Physics D: Applied Physics, 2019, 52, 465103.	2.8	11
7	Morphology and microstructure of Mg-Ti-H films deposited by microwave plasma-assisted co-sputtering. Journal of Alloys and Compounds, 2017, 708, 489-499.	5.5	10
8	A Study of the Radiation Tolerance of CVD Diamond to 70 MeV Protons, Fast Neutrons and 200 MeV Pions. Sensors, 2020, 20, 6648.	3.8	10
9	High deposition rates of uniform films in tetramethylsilane-based plasmas generated by elementary microwave sources in matrix configuration. Surface and Coatings Technology, 2009, 203, 2343-2349.	4.8	7
10	Nanotexturing of plasma-polymer thin films using argon plasma treatment. Surface and Coatings Technology, 2017, 330, 196-203.	4.8	7
11	Production of H[sup â^'] Ions by Surface Mechanisms in Cs-free Multi-dipolar Microwave Plasma. , 2009, , .		6
12	A Better Understanding of the Very Low-Pressure Plasma Polymerization of Aniline by Optical Emission Spectroscopy Analysis. Plasma Chemistry and Plasma Processing, 2018, 38, 887-902.	2.4	6
13	An open-ended coaxial plasma source with extended operating parameters: plasma impedance, coupling and energy efficiency. Plasma Sources Science and Technology, 2014, 23, 064006.	3.1	5
14	Three-phase metal-insulator transition and structural alternative for a VO2 film epitaxially grown on Al2O3(0001). Journal of Applied Physics, 2019, 126, 165306.	2.5	5
15	Oxygen plasma etching of hydrocarbonâ€like polymers: Part I Modeling. Plasma Processes and Polymers, 2018, 15, 1800038.	3.0	4
16	Dehydrogenation process and thermal stability of Mg-Ti-H films in-situ hydrogenated by microwave reactive plasma-assisted co-sputtering technique. Journal of Alloys and Compounds, 2018, 768, 157-165.	5.5	4
17	Boron-10 conversion layer for ultra-cold neutron detection. Journal of Instrumentation, 2019, 14, P09003-P09003.	1.2	4
18	Sulfur: an alternative to mercury for UV emission in low-pressure low-power fluorescent discharges. Journal Physics D: Applied Physics, 2019, 52, 32LT02.	2.8	2

#	Article	IF	CITATIONS
19	X-ray beam induced current analysis of CVD diamond detectors in the perspective of a beam tagging hodoscope development for hadrontherapy on-line monitoring. Diamond and Related Materials, 2021, 112, 108236.	3.9	2
20	Investigation of Diffusion Barrier Layers for Bi-Doped Mg2(Si,Ge) Thermoelectric Legs. Journal of Electronic Materials, 2016, 45, 5570-5581.	2.2	1
21	Characterization of X-ray gas attenuator plasmas byÂoptical emission and tunable laser absorption spectroscopies. Journal of Synchrotron Radiation, 2017, 24, 1195-1208.	2.4	1
22	Oxygen plasma etching of hydrocarbonâ€like polymers: Part II experimental validation. Plasma Processes and Polymers, 2018, 15, 1800037.	3.0	1