Jinwook Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3387905/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An Analysis of Sonothrombolysis and Cavitation for Retracted and Unretracted Clots Using Microbubbles Versus Low-Boiling-Point Nanodroplets. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2022, 69, 711-719.	1.7	7
2	Polyvinyl Alcohol Cryogels for Acoustic Characterization of Phase-Change Contrast Agents. Ultrasound in Medicine and Biology, 2022, 48, 954-960.	0.7	3
3	Dual-Frequency Intravascular Sonothrombolysis: An <i>In Vitro</i> Study. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68, 3599-3607.	1.7	23
4	Nanodroplet-mediated catheter-directed sonothrombolysis of retracted blood clots. Microsystems and Nanoengineering, 2021, 7, 3.	3.4	41
5	Acoustic holograms for directing arbitrary cavitation patterns. Applied Physics Letters, 2021, 118, .	1.5	23
6	Static Force Measurement Using Piezoelectric Sensors. Journal of Sensors, 2021, 2021, 1-8.	0.6	26
7	Magneto-sonothrombolysis with combination of magnetic microbubbles and nanodroplets. Ultrasonics, 2021, 116, 106487.	2.1	24
8	A multi-pillar piezoelectric stack transducer for nanodroplet mediated intravascular sonothrombolysis. Ultrasonics, 2021, 116, 106520.	2.1	23
9	Safety Evaluation of a Forward-Viewing Intravascular Transducer for Sonothrombolysis: An in Vitro and ex Vivo Study. Ultrasound in Medicine and Biology, 2021, 47, 3231-3239.	0.7	15
10	Intravascular Dual-frequency Ultrasound Transducer Using a Stack Composite. , 2021, , .		0
11	Nanodroplet-Mediated Intravascular Sonothrombolysis: Cavitation Study. , 2020, , .		2
12	A Comparison of Sonothrombolysis in Aged Clots between Low-Boiling-Point Phase-Change Nanodroplets and Microbubbles of the Same Composition. Ultrasound in Medicine and Biology, 2020, 46, 3059-3068.	0.7	38
13	Direct Acoustic Imaging Using a Piezoelectric Organic Light-Emitting Diode. ACS Applied Materials & Interfaces, 2020, 12, 36409-36416.	4.0	9
14	Modeling and Design of a Rear-Mounted Underwater Projector Using Equivalent Circuits. Sensors, 2020, 20, 7085.	2.1	4
15	Examining the Influence of Low-Dose Tissue Plasminogen Activator on Microbubble-Mediated Forward-Viewing Intravascular Sonothrombolysis. Ultrasound in Medicine and Biology, 2020, 46, 1698-1706.	0.7	19
16	A Face-Shear Mode Piezoelectric Array Sensor for Elasticity and Force Measurement. Sensors, 2020, 20, 604.	2.1	7
17	Nanodroplet Mediated Intravascular Sonothrombolysis of Retracted Clots. , 2020, , .		3
18	Cavitation-Enhanced High-Pressure Pulsed Sonothrombolysis with Perfluorocarbon Nanodroplets		1

versus Microbubbles in Contracted and Uncontracted Clots. , 2020, , .

JINWOOK KIM

#	Article	IF	CITATIONS
19	Dual-Frequency Intravascular Thrombolysis with Miniaturized Forward-Looking Transducers. , 2020, ,		3
20	Candle-Soot Carbon Nanoparticles in Photoacoustics: Advantages and Challenges for Laser Ultrasound Transmitters. IEEE Nanotechnology Magazine, 2019, 13, 13-28.	0.9	32
21	Intravascular Sonothrombolysis, in vitro, Using a Small Aperture, Forward-Viewing, Sub-Megahertz Transducer to Enhance tPA Treatment. , 2019, , .		3
22	A Row-Column Arraya for Ultrasound-Based Tissue Anisotropy Measurement. , 2018, , .		3
23	A Dual-Frequency Colinear Array for Acoustic Angiography in Prostate Cancer Evaluation. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2018, 65, 2418-2428.	1.7	12
24	AlN Ultrasound Sensor for Photoacoustic Lamb Wave Detection in a High-Temperature Environment. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2018, 65, 1444-1451.	1.7	15
25	Evaluation of Photoacoustic Transduction Efficiency of Candle Soot Nanocomposite Transmitters. IEEE Nanotechnology Magazine, 2018, 17, 985-993.	1.1	37
26	Dual-frequency transducer with a wideband PVDF receiver for contrast-enhanced, adjustable harmonic imaging. , 2017, , .		2
27	High temperature transducer using aluminum nitride single crystal for laser ultrasound detection. Proceedings of SPIE, 2017, , .	0.8	2
28	Intravascular forward-looking ultrasound transducers for microbubble-mediated sonothrombolysis. Scientific Reports, 2017, 7, 3454.	1.6	65
29	Transit Time Difference Flowmeter for Intravenous Flow Rate Measurement Using 1–3 Piezoelectric Composite Transducers. IEEE Sensors Journal, 2017, 17, 5741-5748.	2.4	20
30	Dual-Frequency Piezoelectric Endoscopic Transducer for Imaging Vascular Invasion in Pancreatic Cancer. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2017, 64, 1078-1086.	1.7	25
31	Piezoelectric Floating Element Shear Stress Sensor for the Wind Tunnel Flow Measurement. IEEE Transactions on Industrial Electronics, 2017, 64, 7304-7312.	5.2	16
32	Miniaturized Focused Ultrasound Transducers for Intravascular Therapies. , 2017, , .		11
33	Micromachined 1–3 composite dual frequency IVUS array for contrast enhanced intravascular ultrasound imaging. , 2017, , .		0
34	Development of forward-looking ultrasound transducers for microbubble-aided intravascular ultrasound-enhanced thrombolysis. , 2017, , .		0
35	Photoacoustic transduction efficiency evaluation of candle soot nanoparticles/PDMS composites. , 2017, , .		2
36	Optical fiber laser-generated-focused-ultrasound transducers for intravascular therapies. , 2017, , .		5

 $Optical\ fiber\ laser-generated-focused-ultrasound\ transducers\ for\ intravascular\ therapies.\ ,\ 2017,\ ,\ .$ 36

ΙΙΝΨΟΟΚ ΚΙΜ

#	Article	IF	CITATIONS
37	Development of forward-looking ultrasound transducers for microbubble-aided intravascular ultrasound-enhanced thrombolysis. , 2017, , .		2
38	A dual-frequency co-linear array for prostate acoustic angiography. , 2016, , .		1
39	A dual-frequency endoscopic transducer for imaging vascular invasion in pancreatic cancer. , 2016, , .		3
40	Nanocomposite transducer with a laser ultarsound transmitter and a piezoelectric receiver. , 2016, , .		0
41	A piezoelectric shear stress sensor. , 2016, , .		1
42	Laser-generated-focused ultrasound transducers for microbubble-mediated, dual-excitation sonothrombolysis. , 2016, , .		14
43	A Novel Laser Ultrasound Transducer Using Candle Soot Carbon Nanoparticles. IEEE Nanotechnology Magazine, 2016, 15, 395-401.	1.1	43
44	A Novel Ultrasound Technique for Non-Invasive Assessment of Cell Differentiation. IEEE Sensors Journal, 2016, 16, 61-68.	2.4	7
45	Candle soot nanoparticles-polydimethylsiloxane composites for laser ultrasound transducers. Applied Physics Letters, 2015, 107, .	1.5	98
46	A 3 MHz/18 MHz dual-layer co-linear array for transrectal acoustic angiography. , 2015, , .		14
47	Dual-frequency super harmonic imaging piezoelectric transducers for transrectal ultrasound. Proceedings of SPIE, 2015, , .	0.8	1
48	High-temperature electromechanical characterization of AlN single crystals. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2015, 62, 1880-1887.	1.7	63
49	A novel laser ultrasound transducer using candle soot carbon nanoparticles. , 2015, , .		1
50	Spatiotemporal drug delivery using laser-generated-focused ultrasound system. Journal of Controlled Release, 2015, 220, 592-599.	4.8	68
51	A laser ultrasound transducer using carbon nanofibers–polydimethylsiloxane composite thin film. Applied Physics Letters, 2015, 106, .	1.5	103
52	Phantom evaluation of stacked-type dual-frequency 1–3 composite transducers: A feasibility study on intracavitary acoustic angiography. Ultrasonics, 2015, 63, 7-15.	2.1	37
53	Advantages and challenges of relaxor-PbTiO3 ferroelectric crystals for electroacoustic transducers – A review. Progress in Materials Science, 2015, 68, 1-66.	16.0	607
54	Development of transmitters in dual-frequency transducers for interventional contrast enhanced imaging and acoustic angiography. , 2014, , .		5

Јілжоок Кім

#	Article	IF	CITATIONS
55	Homogenization of PMN-PT/epoxy 1–3 piezocomposites by resonator measurements and finite element analysis. Sensors and Actuators A: Physical, 2014, 206, 97-106.	2.0	35
56	Relaxor-PT Single Crystal Piezoelectric Sensors. Crystals, 2014, 4, 351-376.	1.0	53
57	Determination of the complex material constants of PMN–28%PT piezoelectric single crystals. Smart Materials and Structures, 2013, 22, 125027.	1.8	12
58	Design and Fabrication of Multi-mode Wideband Tonpilz Transducers. Journal of the Acoustical Society of Korea, 2013, 32, 191-198.	0.1	7
59	Equivalent properties of 1-3 piezocomposites made of PMN-PT single crystals for underwater sonar transducers. Proceedings of SPIE, 2011, , .	0.8	1
60	Derivation of Single Phase Material Properties Equivalent to 1-3 Piezoelectric Composites by the Resonant Method. Journal of the Acoustical Society of Korea, 2011, 30, 368-376.	0.1	1