Daniel Croll

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3387900/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Emergence of wheat blast in Bangladesh was caused by a South American lineage of Magnaporthe oryzae. BMC Biology, 2016, 14, 84.	1.7	355
2	The transcriptome of the arbuscular mycorrhizal fungus <i>Glomus intraradices</i> (DAOM 197198) reveals functional tradeoffs in an obligate symbiont. New Phytologist, 2012, 193, 755-769.	3.5	305
3	The Accessory Genome as a Cradle for Adaptive Evolution in Pathogens. PLoS Pathogens, 2012, 8, e1002608.	2.1	227
4	A small secreted protein in <i>Zymoseptoria tritici</i> is responsible for avirulence on wheat cultivars carrying the <i>Stb6</i> resistance gene. New Phytologist, 2017, 214, 619-631.	3.5	218
5	The Genome Biology of Effector Gene Evolution in Filamentous Plant Pathogens. Annual Review of Phytopathology, 2018, 56, 21-40.	3.5	195
6	Genetic variability in a population of arbuscular mycorrhizal fungi causes variation in plant growth. Ecology Letters, 2006, 9, 103-110.	3.0	185
7	What if esca disease of grapevine were not a fungal disease?. Fungal Diversity, 2012, 54, 51-67.	4.7	185
8	Breakage-fusion-bridge Cycles and Large Insertions Contribute to the Rapid Evolution of Accessory Chromosomes in a Fungal Pathogen. PLoS Genetics, 2013, 9, e1003567.	1.5	166
9	A fungal wheat pathogen evolved host specialization by extensive chromosomal rearrangements. ISME Journal, 2017, 11, 1189-1204.	4.4	166
10	Nonself vegetative fusion and genetic exchange in the arbuscular mycorrhizal fungus <i>Glomus intraradices</i> . New Phytologist, 2009, 181, 924-937.	3.5	165
11	Pangenome analyses of the wheat pathogen Zymoseptoria tritici reveal the structural basis of a highly plastic eukaryotic genome. BMC Biology, 2018, 16, 5.	1.7	153
12	Purging of highly deleterious mutations through severe bottlenecks in Alpine ibex. Nature Communications, 2020, 11, 1001.	5.8	147
13	Segregation in a Mycorrhizal Fungus Alters Rice Growth and Symbiosis-Specific Gene Transcription. Current Biology, 2010, 20, 1216-1221.	1.8	140
14	The era of reference genomes in conservation genomics. Trends in Ecology and Evolution, 2022, 37, 197-202.	4.2	138
15	Using Population and Comparative Genomics to Understand the Genetic Basis of Effector-Driven Fungal Pathogen Evolution. Frontiers in Plant Science, 2017, 8, 119.	1.7	135
16	Fusarium: more than a node or a foot-shaped basal cell. Studies in Mycology, 2021, 98, 100116.	4.5	134
17	The Evolution of Orphan Regions in Genomes of a Fungal Pathogen of Wheat. MBio, 2016, 7, .	1.8	132
18	Comparative Transcriptome Analyses in <i>Zymoseptoria tritici</i> Reveal Significant Differences in Gene Expression Among Strains During Plant Infection. Molecular Plant-Microbe Interactions, 2017, 30, 231-244.	1.4	129

#	Article	IF	CITATIONS
19	The Impact of Recombination Hotspots on Genome Evolution of a Fungal Plant Pathogen. Genetics, 2015, 201, 1213-1228.	1.2	123
20	Genetic diversity and host plant preferences revealed by simple sequence repeat and mitochondrial markers in a population of the arbuscular mycorrhizal fungus <i>Glomus intraradices</i> . New Phytologist, 2008, 178, 672-687.	3.5	120
21	Wheat Blast: Past, Present, and Future. Annual Review of Phytopathology, 2018, 56, 427-456.	3.5	112
22	The birth and death of effectors in rapidly evolving filamentous pathogen genomes. Current Opinion in Microbiology, 2018, 46, 34-42.	2.3	106
23	Arbuscular Mycorrhiza: The Challenge to Understand the Genetics of the Fungal Partner. Annual Review of Genetics, 2010, 44, 271-292.	3.2	104
24	A fungal avirulence factor encoded in a highly plastic genomic region triggers partial resistance to septoria tritici blotch. New Phytologist, 2018, 219, 1048-1061.	3.5	103
25	A 19-isolate reference-quality global pangenome for the fungal wheat pathogen Zymoseptoria tritici. BMC Biology, 2020, 18, 12.	1.7	95
26	Wheat blast: from its origins in South America to its emergence as a global threat. Molecular Plant Pathology, 2019, 20, 155-172.	2.0	88
27	Introgression from Domestic Goat Generated Variation at the Major Histocompatibility Complex of Alpine Ibex. PLoS Genetics, 2014, 10, e1004438.	1.5	87
28	Distinct Trajectories of Massive Recent Gene Gains and Losses in Populations of a Microbial Eukaryotic Pathogen. Molecular Biology and Evolution, 2017, 34, 2808-2822.	3.5	87
29	Recombination in Glomus intraradices, a supposed ancient asexual arbuscular mycorrhizal fungus. BMC Evolutionary Biology, 2009, 9, 13.	3.2	86
30	Quantitative Trait Locus Mapping of Melanization in the Plant Pathogenic Fungus <i>Zymoseptoria tritici</i> . G3: Genes, Genomes, Genetics, 2014, 4, 2519-2533.	0.8	86
31	Stress-Driven Transposable Element De-repression Dynamics and Virulence Evolution in a Fungal Pathogen. Molecular Biology and Evolution, 2020, 37, 221-239.	3.5	83
32	Comparative transcriptomic analyses of <scp><i>Z</i></scp> <i>ymoseptoria tritici</i> strains show complex lifestyle transitions and intraspecific variability in transcription profiles. Molecular Plant Pathology, 2016, 17, 845-859.	2.0	82
33	Highly Recombinant VGII Cryptococcus gattii Population Develops Clonal Outbreak Clusters through both Sexual Macroevolution and Asexual Microevolution. MBio, 2014, 5, e01494-14.	1.8	81
34	The evolving fungal genome. Fungal Biology Reviews, 2014, 28, 1-12.	1.9	81
35	Coevolution and Life Cycle Specialization of Plant Cell Wall Degrading Enzymes in a Hemibiotrophic Pathogen. Molecular Biology and Evolution, 2013, 30, 1337-1347.	3.5	77
36	Quantitative trait locus mapping reveals complex genetic architecture of quantitative virulence in the wheat pathogen <i>Zymoseptoria tritici</i> . Molecular Plant Pathology, 2018, 19, 201-216.	2.0	76

#	Article	IF	CITATIONS
37	Genomeâ€wide evidence for divergent selection between populations of a major agricultural pathogen. Molecular Ecology, 2018, 27, 2725-2741.	2.0	74
38	The genetic basis of local adaptation for pathogenic fungi in agricultural ecosystems. Molecular Ecology, 2017, 26, 2027-2040.	2.0	73
39	Transposable element insertions shape gene regulation and melanin production in a fungal pathogen of wheat. BMC Biology, 2018, 16, 78.	1.7	70
40	Gene Copy Number Polymorphisms in an Arbuscular Mycorrhizal Fungal Population. Applied and Environmental Microbiology, 2007, 73, 366-369.	1.4	69
41	Can Evolution Supply What Ecology Demands?. Trends in Ecology and Evolution, 2017, 32, 187-197.	4.2	69
42	QTL mapping of temperature sensitivity reveals candidate genes for thermal adaptation and growth morphology in the plant pathogenic fungus Zymoseptoria tritici. Heredity, 2016, 116, 384-394.	1.2	68
43	Significant genetic and phenotypic changes arising from clonal growth of a single spore of an arbuscular mycorrhizal fungus over multiple generations. New Phytologist, 2012, 196, 853-861.	3.5	66
44	QTL mapping of fungicide sensitivity reveals novel genes and pleiotropy with melanization in the pathogen Zymoseptoria tritici. Fungal Genetics and Biology, 2015, 80, 53-67.	0.9	65
45	Genome evolution in fungal plant pathogens: looking beyond the two-speed genome model. Fungal Biology Reviews, 2020, 34, 136-143.	1.9	63
46	Analysis of the Protein Kinase A-Regulated Proteome of Cryptococcus neoformans Identifies a Role for the Ubiquitin-Proteasome Pathway in Capsule Formation. MBio, 2016, 7, e01862-15.	1.8	62
47	Population genomics analyses of European ibex species show lower diversity and higher inbreeding in reintroduced populations. Evolutionary Applications, 2018, 11, 123-139.	1.5	62
48	Multilocus resistance evolution to azole fungicides in fungal plant pathogen populations. Molecular Ecology, 2016, 25, 6124-6142.	2.0	60
49	Evidence for Extensive Recent Intron Transposition in Closely Related Fungi. Current Biology, 2011, 21, 2017-2022.	1.8	57
50	The rise and fall of genes: origins and functions of plant pathogen pangenomes. Current Opinion in Plant Biology, 2020, 56, 65-73.	3.5	50
51	Rapid Parallel Evolution of Azole Fungicide Resistance in Australian Populations of the Wheat Pathogen <i>Zymoseptoria tritici</i> . Applied and Environmental Microbiology, 2019, 85, .	1.4	49
52	A population-level invasion by transposable elements triggers genome expansion in a fungal pathogen. ELife, 2021, 10, .	2.8	49
53	The Monothiol Glutaredoxin Grx4 Regulates Iron Homeostasis and Virulence in Cryptococcus neoformans. MBio, 2018, 9, .	1.8	48
54	Secretome profiling of Cryptococcus neoformans reveals regulation of a subset of virulence-associated proteins and potential biomarkers by protein kinase A. BMC Microbiology, 2015, 15, 206.	1.3	47

#	Article	IF	CITATIONS
55	A secreted LysM effector protects fungal hyphae through chitin-dependent homodimer polymerization. PLoS Pathogens, 2020, 16, e1008652.	2.1	44
56	Analysis of the nasal vestibule mycobiome in patients with allergic rhinitis. Mycoses, 2015, 58, 167-172.	1.8	43
57	Transcriptome plasticity underlying plant root colonization and insect invasion by <i>Pseudomonas protegens</i> . ISME Journal, 2020, 14, 2766-2782.	4.4	38
58	Maize susceptibility to <i>Ustilago maydis</i> is influenced by genetic and chemical perturbation of carbohydrate allocation. Molecular Plant Pathology, 2017, 18, 1222-1237.	2.0	35
59	Nature's genetic screens: using genomeâ€wide association studies for effector discovery. Molecular Plant Pathology, 2018, 19, 3-6.	2.0	34
60	Genome compartmentalization predates species divergence in the plant pathogen genus Zymoseptoria. BMC Genomics, 2020, 21, 588.	1.2	34
61	Comparative Genomics of Smut Pathogens: Insights From Orphans and Positively Selected Genes Into Host Specialization. Frontiers in Microbiology, 2018, 9, 660.	1.5	33
62	An assay for quantitative virulence in <i><scp>R</scp>hynchosporium commune</i> reveals an association between effector genotype and virulence. Plant Pathology, 2014, 63, 405-414.	1.2	30
63	The Genetic Architecture of Emerging Fungicide Resistance in Populations of a Global Wheat Pathogen. Genome Biology and Evolution, 2020, 12, 2231-2244.	1.1	29
64	Strong reproductive isolation and narrow genomic tracts of differentiation among three woodpecker species in secondary contact. Molecular Ecology, 2016, 25, 4247-4266.	2.0	28
65	Genomewide signatures of selection in <i>Epichloë</i> reveal candidate genes for host specialization. Molecular Ecology, 2018, 27, 3070-3086.	2.0	28
66	Genome-Wide Detection of Genes Under Positive Selection in Worldwide Populations of the Barley Scald Pathogen. Genome Biology and Evolution, 2018, 10, 1315-1332.	1.1	28
67	A Chromosome-Scale Genome Assembly for the <i>Fusarium oxysporum</i> Strain Fo5176 To Establish a Model <i>Arabidopsis</i> -Fungal Pathosystem. G3: Genes, Genomes, Genetics, 2020, 10, 3549-3555.	0.8	28
68	A cryptic heterogametic transition revealed by sexâ€linked DNA markers in Palearctic green toads. Journal of Evolutionary Biology, 2011, 24, 1064-1070.	0.8	27
69	Meiosis Leads to Pervasive Copy-Number Variation and Distorted Inheritance of Accessory Chromosomes of the Wheat Pathogen Zymoseptoria tritici. Genome Biology and Evolution, 2018, 10, 1416-1429.	1.1	26
70	High-Level Molecular Diversity of Copper-Zinc Superoxide Dismutase Genes among and within Species of Arbuscular Mycorrhizal Fungi. Applied and Environmental Microbiology, 2009, 75, 1970-1978.	1.4	25
71	A devil's bargain with transposable elements in plant pathogens. Trends in Genetics, 2022, 38, 222-230.	2.9	25
72	Mapping the adaptive landscape of a major agricultural pathogen reveals evolutionary constraints across heterogeneous environments. ISME Journal, 2021, 15, 1402-1419.	4.4	25

#	Article	IF	CITATIONS
73	Complex Evolutionary Origins of Specialized Metabolite Gene Cluster Diversity among the Plant Pathogenic Fungi of the Fusarium graminearum Species Complex. Genome Biology and Evolution, 2019, 11, 3106-3122.	1.1	24
74	Emergence and diversification of a highly invasive chestnut pathogen lineage across southeastern Europe. ELife, 2021, 10, .	2.8	24
75	Cautionary Notes on Use of the MoT3 Diagnostic Assay for <i>Magnaporthe oryzae</i> Wheat and Rice Blast Isolates. Phytopathology, 2019, 109, 504-508.	1.1	23
76	Population genetic structure of Mycosphaerella graminicola and Quinone Outside Inhibitor (QoI) resistance in the Czech Republic. European Journal of Plant Pathology, 2013, 135, 211-224.	0.8	22
77	Machine-learning predicts genomic determinants of meiosis-driven structural variation in a eukaryotic pathogen. Nature Communications, 2021, 12, 3551.	5.8	21
78	Population-level deep sequencing reveals the interplay of clonal and sexual reproduction in the fungal wheat pathogen Zymoseptoria tritici. Microbial Genomics, 2021, 7, .	1.0	21
79	Multilocus genotyping of arbuscular mycorrhizal fungi and marker suitability for population genetics. New Phytologist, 2008, 180, 564-568.	3.5	19
80	Intron Gains and Losses in the Evolution of Fusarium and Cryptococcus Fungi. Genome Biology and Evolution, 2012, 4, 1148-1161.	1.1	19
81	The emergence of the multiâ€species NIP1 effector in <i>Rhynchosporium</i> was accompanied by high rates of gene duplications and losses. Environmental Microbiology, 2019, 21, 2677-2695.	1.8	19
82	Maintenance of variation in virulence and reproduction in populations of an agricultural plant pathogen. Evolutionary Applications, 2021, 14, 335-347.	1.5	18
83	Rapid sequence evolution driven by transposable elements at a virulence locus in a fungal wheat pathogen. BMC Genomics, 2021, 22, 393.	1.2	18
84	The complex genomic basis of rapid convergent adaptation to pesticides across continents in a fungal plant pathogen. Molecular Ecology, 2021, 30, 5390-5405.	2.0	17
85	Comparative Genomics Analyses of Lifestyle Transitions at the Origin of an Invasive Fungal Pathogen in the Genus <i>Cryphonectria</i> . MSphere, 2020, 5, .	1.3	17
86	Chromosomal assembly and analyses of genome-wide recombination rates in the forest pathogenic fungus Armillaria ostoyae. Heredity, 2020, 124, 699-713.	1.2	17
87	Natural selection drives population divergence for local adaptation in a wheat pathogen. Fungal Genetics and Biology, 2020, 141, 103398.	0.9	16
88	What the population genetic structures of host and pathogen tell us about disease evolution. New Phytologist, 2016, 212, 537-539.	3.5	15
89	Acetate provokes mitochondrial stress and cell death in <i>Ustilago maydis</i> . Molecular Microbiology, 2018, 107, 488-507.	1.2	15
90	Chloroplastâ€associated metabolic functions influence the susceptibility of maize to <i>Ustilago maydis</i> . Molecular Plant Pathology, 2017, 18, 1210-1221.	2.0	14

#	Article	IF	CITATIONS
91	The population genetics of adaptation through copy number variation in a fungal plant pathogen. Molecular Ecology, 2023, 32, 2443-2460.	2.0	14
92	Variability in an effector gene promoter of a necrotrophic fungal pathogen dictates epistasis and effector-triggered susceptibility in wheat. PLoS Pathogens, 2022, 18, e1010149.	2.1	9
93	Population genomics of transposable element activation in the highly repressive genome of an agricultural pathogen. Microbial Genomics, 2021, 7, .	1.0	8
94	Soil composition and plant genotype determine benzoxazinoidâ€nediated plant–soil feedbacks in cereals. Plant, Cell and Environment, 2021, 44, 3732-3744.	2.8	8
95	Screening of grapevine red blotch virus in two European ampelographic collections. Journal of Plant Pathology, 2022, 104, 9-15.	0.6	8
96	High-density genetic mapping identifies the genetic basis of a natural colony morphology mutant in the root rot pathogen Armillaria ostoyae. Fungal Genetics and Biology, 2017, 108, 44-54.	0.9	7
97	A robust sequencing assay of a thousand amplicons for the highâ€ŧhroughput population monitoring of Alpine ibex immunogenetics. Molecular Ecology Resources, 2022, 22, 66-85.	2.2	7
98	Temporal changes in pathogen diversity in a perennial plant–pathogen–hyperparasite system. Molecular Ecology, 2022, 31, 2073-2088.	2.0	7
99	Genome of Malassezia arunalokei and Its Distribution on Facial Skin. Microbiology Spectrum, 2022, 10, .	1.2	7
100	The putative phospholipase Lip2 counteracts oxidative damage and influences the virulence of <i>Ustilago maydis</i> . Molecular Plant Pathology, 2017, 18, 210-221.	2.0	6
101	Hitchhiking Selection Is Driving Intron Gain in a Pathogenic Fungus. Molecular Biology and Evolution, 2014, 31, 1741-1749.	3.5	5
102	Transposable Elements in Fungi: Coevolution With the Host Genome Shapes, Genome Architecture, Plasticity and Adaptation. , 2021, , 142-155.		5
103	A new method to determine the diet of pygmy hippopotamus in TaÃ⁻ National Park, Côte d'Ivoire. African Journal of Ecology, 2021, 59, 809-825.	0.4	5
104	Cryptic genetic structure and copyâ€number variation in the ubiquitous forest symbiotic fungus <scp><i>Cenococcum geophilum</i></scp> . Environmental Microbiology, 2021, 23, 6536-6556.	1.8	5
105	Organic acids and glucose prime late-stage fungal biotrophy in maize. Science, 2022, 376, 1187-1191.	6.0	5
106	Histone H3K27 Methylation Perturbs Transcriptional Robustness and Underpins Dispensability of Highly Conserved Genes in Fungi. Molecular Biology and Evolution, 2022, 39, .	3.5	4
107	Unraveling coevolutionary dynamics using ecological genomics. Trends in Genetics, 2022, 38, 1003-1012.	2.9	4
108	Genome-wide association study for septoria tritici blotch resistance reveals the occurrence and distribution of Stb6 in a historic Swiss landrace collection. Euphytica, 2021, 217, 1.	0.6	3

#	Article	IF	CITATIONS
109	Transcriptomeâ€wide SNPs for <i>Botrychium lunaria</i> ferns enable fineâ€grained analysis of ploidy and population structure. Molecular Ecology Resources, 2022, 22, 254-271.	2.2	3

Learn from the fungi: Adaptive evolution without sex in fungal pathogens (comment on DOI) Tj ETQq000 rgBT /Overlock 10_{12} Tf 50 702 1.2

111	Evolution in the absence of sex: Ideas revisited in the postâ€genomics age (retrospective on DOI) Tj ETQq1 1 0.78	84314 rgBT 1.2	/Overlock
112	Tackling microbial threats in agriculture with integrative imaging and computational approaches. Computational and Structural Biotechnology Journal, 2021, 19, 372-383.	1.9	1
113	High-quality genome assembly of Pseudocercospora ulei the main threat to natural rubber trees. Genetics and Molecular Biology, 2022, 45, e50510051.	0.6	1
114	A secreted LysM effector protects fungal hyphae through chitin-dependent homodimer polymerization. , 2020, 16, e1008652.		0
115	A secreted LysM effector protects fungal hyphae through chitin-dependent homodimer polymerization. , 2020, 16, e1008652.		0
116	A secreted LysM effector protects fungal hyphae through chitin-dependent homodimer polymerization. , 2020, 16, e1008652.		0
117	A secreted LysM effector protects fungal hyphae through chitin-dependent homodimer polymerization. , 2020, 16, e1008652.		0
118	A secreted LysM effector protects fungal hyphae through chitin-dependent homodimer polymerization. , 2020, 16, e1008652.		0
119	A secreted LysM effector protects fungal hyphae through chitin-dependent homodimer polymerization. , 2020, 16, e1008652.		0