Chang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3387381/publications.pdf

Version: 2024-02-01

687363 610901 1,022 24 13 24 citations h-index g-index papers 24 24 24 1721 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Impact of silver nanoparticles on human cells: Effect of particle size. Nanotoxicology, 2010, 4, 319-330.	3.0	429
2	Molybdenum and cadmium co-induce oxidative stress and apoptosis through mitochondria-mediated pathway in duck renal tubular epithelial cells. Journal of Hazardous Materials, 2020, 383, 121157.	12.4	100
3	Halobenzoquinone-Induced Developmental Toxicity, Oxidative Stress, and Apoptosis in Zebrafish Embryos. Environmental Science & Environmental	10.0	81
4	Presence and Partitioning Behavior of Polyfluorinated lodine Alkanes in Environmental Matrices around a Fluorochemical Manufacturing Plant: Another Possible Source for Perfluorinated Carboxylic Acids?. Environmental Science & Environology, 2010, 44, 5755-5761.	10.0	58
5	Comparative Genomics of Degradative Novosphingobium Strains With Special Reference to Microcystin-Degrading Novosphingobium sp. THN1. Frontiers in Microbiology, 2018, 9, 2238.	3.5	43
6	The <i>in Vitro</i> Estrogenic Activities of Polyfluorinated Iodine Alkanes. Environmental Health Perspectives, 2012, 120, 119-125.	6.0	42
7	Trace determination of airborne polyfluorinated iodine alkanes using multisorbent thermal desorption/gas chromatography/high resolution mass spectrometry. Journal of Chromatography A, 2010, 1217, 4439-4447.	3.7	39
8	Levels, trends and risk assessment of arsenic pollution in Yangzonghai Lake, Yunnan Province, China. Science China Chemistry, 2010, 53, 1809-1817.	8.2	37
9	Inhibition of autophagy enhances cadmium-induced apoptosis in duck renal tubular epithelial cells. Ecotoxicology and Environmental Safety, 2020, 205, 111188.	6.0	30
10	Perfluorooctyl Iodide Stimulates Steroidogenesis in H295R Cells via a Cyclic Adenosine Monophosphate Signaling Pathway. Chemical Research in Toxicology, 2015, 28, 848-854.	3.3	26
11	Developmental Toxicity of Few-Layered Black Phosphorus toward Zebrafish. Environmental Science & Environmental & Environmental & Environmental & Environmental & Environmental	10.0	18
12	Toxicity effects of four typical nanomaterials on the growth of Escherichia coli, Bacillus subtilis and Agrobacterium tumefaciens. Environmental Earth Sciences, 2012, 65, 1643-1649.	2.7	17
13	Identification of Potential Long Noncoding RNA Biomarker of Mercury Compounds in Zebrafish Embryos. Chemical Research in Toxicology, 2019, 32, 878-886.	3.3	17
14	Microcystin-LR Degradation and Gene Regulation of Microcystin-Degrading Novosphingobium sp. THN1 at Different Carbon Concentrations. Frontiers in Microbiology, 2019, 10, 1750.	3.5	14
15	Characterization of complexation of PVP copolymer with DNA. Polymers for Advanced Technologies, 2009, 20, 410-415.	3.2	11
16	Evaluation of hypopigmentation in embryonic zebrafish induced by emerging disinfection byproduct, 3, 5-di-l-tyrosylalanine. Aquatic Toxicology, 2020, 225, 105525.	4.0	10
17	Transcriptomic analysis of adult zebrafish heart and brain in response to 2, 6-dichloro-1, 4-benzoquinone exposure. Ecotoxicology and Environmental Safety, 2021, 226, 112835.	6.0	10
18	Effect-Directed Analysis Based on the Reduced Human Transcriptome (RHT) to Identify Organic Contaminants in Source and Tap Waters along the Yangtze River. Environmental Science & Eamp; Technology, 2022, 56, 7840-7852.	10.0	10

#	Article	IF	CITATION
19	Tetrabromobisphenol A (TBBPA) exhibits specific antimicrobial activity against Gram-positive bacteria without detectable resistance. Chemical Communications, 2017, 53, 3512-3515.	4.1	9
20	Estrogenâ€like response of perfluorooctyl iodide in male medaka (<i>Oryzias latipes</i>) based on hepatic vitellogenin induction. Environmental Toxicology, 2013, 28, 571-578.	4.0	8
21	Capture and elimination of Staphylococcus aureus based on Langmuir–Blodgett MnO2 nanowire monolayer promotes infected wound healing. Journal of Materials Chemistry B, 2019, 7, 4198-4206.	5.8	5
22	Neurotoxicity and transcriptome changes in embryonic zebrafish induced by halobenzoquinone exposure. Journal of Environmental Sciences, 2022, 117, 129-140.	6.1	5
23	Induced temperature-dependent DNA degradation by C60 without photoactivation. Science Bulletin, 2011, 56, 3100-3107.	1.7	2
24	PFOI stimulates the motility of T24 bladder cancer cells: Possible involvement and activation of lncRNA malat1. Chemosphere, 2022, 287, 131967.	8.2	1