Qingrui Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3386887/publications.pdf

Version: 2024-02-01

113 papers	8,283 citations	44042 48 h-index	89 g-index
113	113	113	8738
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	In-situ synthesis of Co ₃ O ₄ nanocrystal clusters on graphene as high-performance oxygen reduction reaction electrocatalysts. Materials Technology, 2022, 37, 2106-2115.	1.5	1
2	Ethanol Production from Colpomenia sinuosa by an Alginate Fermentation Strain Meyerozyma guilliermondii. Indian Journal of Microbiology, 2022, 62, 112-122.	1.5	6
3	Efficient and sustainable phosphate removal from water by small-sized Al(OH)3 nanocrystals confined in discarded Artemia Cyst-shell: Ultrahigh sorption capacity and rapid sequestration. Science of the Total Environment, 2022, 803, 150087.	3.9	31
4	Efficient heavy metal sequestration from water by Mussel-inspired polystyrene conjugated with polyethyleneimine (PEI). Chemical Engineering Journal, 2022, 429, 132599.	6.6	35
5	Derivatives of metal-organic frameworks for heterogeneous Fenton-like processes: From preparation to performance and mechanisms in wastewater purification – A mini review. Environmental Research, 2022, 206, 112414.	3.7	61
6	New insight into the bioinspired sub-10Ânm Sn(HPO4)2 confinement for efficient heavy metal remediation in wastewater. Journal of Colloid and Interface Science, 2022, 609, 676-685.	5.0	16
7	Development of MoS2/cellulose aerogels nanocomposite with superior application capability for selective lead(II) capture. Separation and Purification Technology, 2022, 284, 120275.	3.9	18
8	Efficient Heavy Metal Removal from Water by Polydopamine Confined ZrO ₂ Nanocrystals with Improvements in Nanoparticles Utilization and Ion Diffusion. ACS ES&T Engineering, 2022, 2, 794-806.	3.7	12
9	Isolation and Performance Study of a Novel Lignin-degrading Strain. Chemical and Biochemical Engineering Quarterly, 2022, , .	0.5	O
10	Enhanced mechanical performances and high-conductivity of rGO/PEDOT:PSS/PVA composite fiber films via electrospinning strategy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 643, 128791.	2.3	12
11	Efficient visible-light-driven degradation of tetracycline by a 2D/2D rGO-Bi2WO6 heterostructure. Environmental Research, 2022, 212, 113326.	3.7	11
12	A millimeter-sized negatively charged polymer embedded with molybdenum disulfide nanosheets for efficient removal of Pb(II) from aqueous solution. Chinese Chemical Letters, 2021, 32, 2342-2346.	4.8	52
13	Self-Assembled Sandwich-like MXene-Derived Composites as Highly Efficient and Sustainable Catalysts for Wastewater Treatment. Langmuir, 2021, 37, 1267-1278.	1.6	69
14	Green Preparation and Environmental Applications of Some Electrospun Fibers. Materials Horizons, 2021, , 455-484.	0.3	0
15	Selective adsorption of phosphate in water using lanthanum-based nanomaterials: A critical review. Chinese Chemical Letters, 2021, 32, 2637-2647.	4.8	70
16	Screening and Comparison of Lignin Degradation Microbial Consortia from Wooden Antiques. Molecules, 2021, 26, 2862.	1.7	17
17	Highly efficient catalytic performances of nitro compounds via hierarchical PdNPs-loaded MXene/polymer nanocomposites synthesized through electrospinning strategy for wastewater treatment. Chinese Chemical Letters, 2020, 31, 992-995.	4.8	118
18	All-solid-state BiVO4/ZnIn2S4 Z-scheme composite with efficient charge separations for improved visible light photocatalytic organics degradation. Chinese Chemical Letters, 2020, 31, 547-550.	4.8	96

#	Article	lF	Citations
19	Arsenate removal from underground water by polystyrene-confined hydrated ferric oxide (HFO) nanoparticles:effect of humic acid. Environmental Science and Pollution Research, 2020, 27, 6861-6871.	2.7	9
20	Facile preparation of self-assembled MXene@Au@CdS nanocomposite with enhanced photocatalytic hydrogen production activity. Science China Materials, 2020, 63, 2228-2238.	3.5	128
21	Fast and robust lead (II) removal from water by bioinspired amyloid lysozyme fibrils conjugated with polyethyleneimine (PEI). Chemical Engineering Journal, 2020, 390, 124667.	6.6	68
22	Self-assembled functional components-doped conductive polypyrrole composite hydrogels with enhanced electrochemical performances. RSC Advances, 2020, 10, 10546-10551.	1.7	45
23	Highly effective lead (II) removal by sustainable alkaline activated \hat{I}^2 -lactoglobulin nanofibrils from whey protein. Journal of Cleaner Production, 2020, 255, 120297.	4.6	49
24	Isolation, Kinetics, and Performance of a Novel Phenol Degrading Strain. Chemical and Biochemical Engineering Quarterly, 2020, 33, 485-494.	0.5	2
25	Nitrogen Removal by HN-AD Bacteria Immobilized on Modified Absorbent Stone. Chemical and Biochemical Engineering Quarterly, 2020, 34, 193-207.	0.5	2
26	Synthesis, characterization of amino-modified walnut shell and adsorption for Pb(II) ions from aqueous solution. Polymer Bulletin, 2019, 76, 1099-1114.	1.7	13
27	Enhancing CaO2 fenton-like process by Fe(II)-oxalic acid complexation for organic wastewater treatment. Water Research, 2019, 163, 114861.	5.3	200
28	Highly Efficient Catalytic Performances of Nitro Compounds and Morin via Self-Assembled MXene-Pd Nanocomposites Synthesized through Self-Reduction Strategy. Nanomaterials, 2019, 9, 1009.	1.9	30
29	Self-Assembled Naphthylidene-Containing Schiff Base Anchored Polystyrene Nanocomposites Targeted for Selective Cu(II) Ion Removal from Wastewater. ACS Omega, 2019, 4, 12098-12106.	1.6	12
30	Preparation and Cu(II) ion removal capacities of Schiff base-based polystyrene nanocomposites for wastewater treatment. Integrated Ferroelectrics, 2019, 197, 49-57.	0.3	0
31	Isolation and Degradation Characteristics of Highly Efficient Malodorous Black Water Degrading Bacteria. Environmental Engineering Science, 2019, 36, 1061-1069.	0.8	5
32	Application of natural mixed bacteria immobilized carriers to different kinds of organic wastewater treatment and microbial community comparison. Journal of Hazardous Materials, 2019, 377, 113-123.	6.5	37
33	Non-covalent self-assembly of multi-target polystyrene composite adsorbent with highly efficient Cu(II) ion removal capability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 577, 674-682.	2.3	10
34	Reliable Model of Reservoir Water Quality Prediction Based on Improved ARIMA Method. Environmental Engineering Science, 2019, 36, 1041-1048.	0.8	20
35	Preparation of Different Activated Sludge Immobilized Carriers and Their Organic Wastewater Treatment Performance by Microbial Community. Environmental Engineering Science, 2019, 36, 604-613.	0.8	6
36	Selective and Efficient Removal of Fluoride from Water: In Situ Engineered Amyloid Fibril/ZrO ₂ Hybrid Membranes. Angewandte Chemie, 2019, 131, 6073-6077.	1.6	14

#	Article	IF	Citations
37	Selective and Efficient Removal of Fluoride from Water: In Situ Engineered Amyloid Fibril/ZrO ₂ Hybrid Membranes. Angewandte Chemie - International Edition, 2019, 58, 6012-6016.	7.2	205
38	Self-reductive synthesis of MXene/Na _{0.55} Mn _{1.4} Ti _{0.6} O ₄ hybrids for high-performance symmetric lithium ion batteries. Journal of Materials Chemistry A, 2019, 7, 7516-7525.	5.2	18
39	Alginate Lyase of a Novel Algae Fermentation Strain. Chemical and Biochemical Engineering Quarterly, 2019, 33, 125-131.	0.5	5
40	Peroxymonosulfate enhanced antibiotic removal and synchronous electricity generation in a photocatalytic fuel cell. Electrochimica Acta, 2019, 298, 59-69.	2.6	95
41	The porous structure effects of skeleton builders in sustainable sludge dewatering process. Journal of Environmental Management, 2019, 230, 14-20.	3.8	49
42	Highly Efficient and Rapid Lead(II) Scavenging by the Natural <i>Artemia</i> Cyst Shell with Unique Three-Dimensional Porous Structure and Strong Sorption Affinity. ACS Sustainable Chemistry and Engineering, 2018, 6, 1343-1351.	3.2	68
43	Selective Cu(II) ion removal from wastewater via surface charged self-assembled polystyrene-Schiff base nanocomposites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 545, 60-67.	2.3	66
44	The alginate fermentation strain <i><i>Pantoea</i></i> sp. F16-PCAi-T3P21 and ethanol production. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2018, 40, 394-399.	1.2	3
45	Unique strengthening mechanisms of ultrahigh pressure Mg alloys. Bioactive Materials, 2018, 3, 250-254.	8.6	6
46	Distinguished Cr(VI) capture with rapid and superior capability using polydopamine microsphere: Behavior and mechanism. Journal of Hazardous Materials, 2018, 342, 732-740.	6.5	169
47	Two-dimensional MXene/A-TiO2 composite with unprecedented catalytic activation for sodium alanate. Catalysis Today, 2018, 318, 167-174.	2.2	30
48	Sandwiched Fe ₃ O ₄ /Carboxylate Graphene Oxide Nanostructures Constructed by Layer-by-Layer Assembly for Highly Efficient and Magnetically Recyclable Dye Removal. ACS Sustainable Chemistry and Engineering, 2018, 6, 1279-1288.	3.2	283
49	Elaborate design of polymeric nanocomposites with Mg(ii)-buffering nanochannels for highly efficient and selective removal of heavy metals from water: case study for Cu(ii). Environmental Science: Nano, 2018, 5, 2440-2451.	2.2	52
50	Self-assembled MXene-based nanocomposites via layer-by-layer strategy for elevated adsorption capacities. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 553, 105-113.	2.3	88
51	Synthesis of Nanoflower-Shaped MXene Derivative with Unexpected Catalytic Activity for Dehydrogenation of Sodium Alanates. ACS Applied Materials & Samp; Interfaces, 2017, 9, 7611-7618.	4.0	64
52	Preferable phosphate sequestration by nano-La(III) (hydr)oxides modified wheat straw with excellent properties in regeneration. Chemical Engineering Journal, 2017, 315, 345-354.	6.6	248
53	Bioinspired Polydopamine Sheathed Nanofibers Containing Carboxylate Graphene Oxide Nanosheet for High-Efficient Dyes Scavenger. ACS Sustainable Chemistry and Engineering, 2017, 5, 4948-4956.	3.2	224
54	Hydrogenated Core–Shell MAX@K ₂ Ti ₈ O ₁₇ Pseudocapacitance with Ultrafast Sodium Storage and Longâ€Term Cycling. Advanced Energy Materials, 2017, 7, 1700700.	10.2	54

#	Article	IF	CITATIONS
55	Highly efficient and rapid fluoride scavenger using an acid/base tolerant zirconium phosphate nanoflake: Behavior and mechanism. Journal of Cleaner Production, 2017, 161, 317-326.	4.6	65
56	Highly Efficient Lead(II) Sequestration Using Size-Controllable Polydopamine Microspheres with Superior Application Capability and Rapid Capture. ACS Sustainable Chemistry and Engineering, 2017, 5, 4161-4170.	3.2	137
57	Heterogeneous Ti ₃ SiC ₂ @C-Containing Na ₂ Ti ₇ O ₁₅ Architecture for High-Performance Sodium Storage at Elevated Temperatures. ACS Nano, 2017, 11, 12219-12229.	7.3	48
58	Preparation of graphene oxide-polymer composite hydrogels via thiol-ene photopolymerization as efficient dye adsorbents for wastewater treatment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 529, 668-676.	2.3	42
59	High oxygen reduction reaction activity of C-N/Ag hybrid composites for Zn-air battery. Journal of Alloys and Compounds, 2017, 694, 419-428.	2.8	31
60	Self-Assembly and Drug Release Capacities of Organogels via Some Amide Compounds with Aromatic Substituent Headgroups. Materials, 2016, 9, 541.	1.3	13
61	Preparation and photocatalytic property of silver nanoparticles using cationic pyridine derivative. Integrated Ferroelectrics, 2016, 169, 15-21.	0.3	0
62	Self-Reduction Synthesis of New MXene/Ag Composites with Unexpected Electrocatalytic Activity. ACS Sustainable Chemistry and Engineering, 2016, 4, 6763-6771.	3.2	216
63	Synthesis of MXene/Ag Composites for Extraordinary Long Cycle Lifetime Lithium Storage at High Rates. ACS Applied Materials & Samp; Interfaces, 2016, 8, 22280-22286.	4.0	266
64	Theoretical interpretation on lead adsorption behavior of new two-dimensional transition metal carbides and nitrides. Journal of Alloys and Compounds, 2016, 684, 504-509.	2.8	55
65	Synthesis of urchin-like rutile titania carbon nanocomposites by iron-facilitated phase transformation of MXene for environmental remediation. Journal of Materials Chemistry A, 2016, 4, 489-499.	5.2	170
66	The enhanced antibacterial performance by the unique Artemia egg shell-supported nano-Ag composites. Journal of the Taiwan Institute of Chemical Engineers, 2016, 61, 336-341.	2.7	8
67	Efficient phosphate sequestration for water purification by unique sandwich-like MXene/magnetic iron oxide nanocomposites. Nanoscale, 2016, 8, 7085-7093.	2.8	325
68	Preparation and Absorption Capacity Evaluation of Composite Hydrogels via Graphene Oxide and Multi-Amine Molecules. Science of Advanced Materials, 2016, 8, 1400-1407.	0.1	6
69	Facile Preparation of Silver Halide Nanoparticles as Visible Light Photocatalysts. Nanomaterials and Nanotechnology, 2015, 5, 20.	1.2	17
70	Preparation and Self-assembly of Functionalized Nanocomposites and Nanomaterials $\hat{a} \in \mathbb{C}$ Relationship Between Structures and Properties., 2015,,.		1
71	Highly Efficient Phosphate Sequestration in Aqueous Solutions Using Nanomagnesium Hydroxide Modified Polystyrene Materials. Industrial & Engineering Chemistry Research, 2015, 54, 2940-2949.	1.8	50
72	Binary Organogels via Some Aminobenzimidazole/Benzothiazole Compounds and Fatty Acids with Different Alkyl Lengths: Self-Assembly and Drug Release Properties. Integrated Ferroelectrics, 2015, 160, 38-48.	0.3	4

#	Article	IF	CITATIONS
73	Preparation and adsorption capacity evaluation of graphene oxide-chitosan composite hydrogels. Science China Materials, 2015, 58, 811-818.	3.5	70
74	Reduced Graphene Oxide-Based Silver Nanoparticle-Containing Composite Hydrogel as Highly Efficient Dye Catalysts for Wastewater Treatment. Scientific Reports, 2015, 5, 11873.	1.6	175
75	Facile and Scalable Preparation of Graphene Oxide-Based Magnetic Hybrids for Fast and Highly Efficient Removal of Organic Dyes. Scientific Reports, 2015, 5, 12451.	1.6	112
76	Accelerated Sorption Diffusion for Cu(II) Retention by Anchorage of Nano-zirconium Dioxide onto Highly charged Polystyrene Material. Scientific Reports, 2015, 5, 10646.	1.6	12
77	Preparation of Graphene Oxide-Based Hydrogels as Efficient Dye Adsorbents for Wastewater Treatment. Nanoscale Research Letters, 2015, 10, 931.	3.1	309
78	Hydrothermal synthesis of hierarchical core–shell manganese oxide nanocomposites as efficient dye adsorbents for wastewater treatment. RSC Advances, 2015, 5, 56279-56285.	1.7	82
79	Efficient Phosphate Sequestration in Waters by the Unique Hierarchical 3D <i>Artemia</i> Egg Shell Supported Nano-Mg(OH) ₂ Composite and Sequenced Potential Application in Slow Release Fertilizer. ACS Sustainable Chemistry and Engineering, 2015, 3, 2496-2503.	3.2	32
80	One-step facile fabrication of sea urchin-like zirconium oxide for efficient phosphate sequestration. RSC Advances, 2015, 5, 91218-91224.	1.7	23
81	Self-Assembly Reduced Graphene Oxide Nanosheet Hydrogel Fabrication by Anchorage of Chitosan/Silver and Its Potential Efficient Application toward Dye Degradation for Wastewater Treatments. ACS Sustainable Chemistry and Engineering, 2015, 3, 3130-3139.	3.2	202
82	Heavy-Metal Adsorption Behavior of Two-Dimensional Alkalization-Intercalated MXene by First-Principles Calculations. Journal of Physical Chemistry C, 2015, 119, 20923-20930.	1.5	193
83	Unique and outstanding cadmium sequestration by polystyrene-supported nanosized zirconium hydroxides: a case study. RSC Advances, 2015, 5, 55445-55452.	1.7	17
84	Chlorination decomposition of struvite and recycling of its product for the removal of ammonium-nitrogen from landfill leachate. Chemosphere, 2015, 136, 289-296.	4.2	48
85	New Route to the Charged Functional Assisted Nano-Lanthanum Hydroxide Composite with Superior Lead Sorption Capacities. Science of Advanced Materials, 2015, 7, 1722-1729.	0.1	2
86	Investigation of Orderly Nanostructures and Assembly Modes of Binary Organogels via Glutamic Acid Amino Derivative and Different Fatty Acids. Integrated Ferroelectrics, 2014, 151, 31-41.	0.3	2
87	Binary organogels based on glutamic acid derivatives and different acids: Solvent effect and molecular skeletons on self-assembly and nanostructures. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 447, 88-96.	2.3	15
88	New insight into the biological treatment by activated sludge: The role of adsorption process. Bioresource Technology, 2014, 153, 160-164.	4.8	33
89	Removal of ammonia from landfill leachate by struvite precipitation with the use of low-cost phosphate and magnesium sources. Journal of Environmental Management, 2014, 145, 191-198.	3.8	96
90	Sorption of Lead(II), Cadmium(II), and Copper(II) Ions from Aqueous Solutions Using Tea Waste. Industrial & Engineering Chemistry Research, 2014, 53, 3629-3635.	1.8	113

#	Article	IF	Citations
91	Unique Lead Adsorption Behavior of Activated Hydroxyl Group in Two-Dimensional Titanium Carbide. Journal of the American Chemical Society, 2014, 136, 4113-4116.	6.6	1,068
92	Self-Assembly and Headgroup Effect in Nanostructured Organogels via Cationic Amphiphile-Graphene Oxide Composites. PLoS ONE, 2014, 9, e101620.	1.1	22
93	Rationally designed porous polystyrene encapsulated zirconium phosphate nanocomposite for highly efficient fluoride uptake in waters. Scientific Reports, 2013, 3, 2551.	1.6	36
94	Spacer effect on nanostructures and self-assembly in organogels via some bolaform cholesteryl imide derivatives with different spacers. Nanoscale Research Letters, 2013, 8, 406.	3.1	18
95	Selective removal of phosphate in waters using a novel of cation adsorbent: Zirconium phosphate (ZrP) behavior and mechanism. Chemical Engineering Journal, 2013, 221, 315-321.	6.6	79
96	Interfacial assembly of a series of Cu(II)-coordinated Schiff bases complexes: orderly nanostructures and supramolecular chirality. Science China Technological Sciences, 2013, 56, 20-24.	2.0	5
97	Sorption Enhancement of Lead Ions from Water by Surface Charged Polystyrene-Supported Nano-Zirconium Oxide Composites. Environmental Science & Technology, 2013, 47, 6536-6544.	4.6	167
98	Self-Assembly, Interfacial Nanostructure, and Supramolecular Chirality of the Langmuir-Blodgett Films of Some Schiff Base Derivatives without Alkyl Chain. Journal of Nanomaterials, 2013, 2013, 1-9.	1.5	7
99	Preparation and Photocatalytic Property of Gold Nanoparticles by Using Two Bolaform Cholesteryl Imide Derivatives. Journal of Dispersion Science and Technology, 2013, 34, 1675-1682.	1.3	6
100	Electropolymerization Treatment of Phenol Wastewater and the Reclamation of Phenol. Water Environment Research, 2012, 84, 2028-2036.	1.3	7
101	Synthesis and photocatalytic property of gold nanoparticles by using a series of bolaform Schiff base amphiphiles. Materials Research Bulletin, 2012, 47, 4203-4209.	2.7	17
102	New insights into nanocomposite adsorbents for water treatment: A case study of polystyrene-supported zirconium phosphate nanoparticles for lead removal. Journal of Nanoparticle Research, 2011, 13, 5355-5364.	0.8	54
103	Fabrication of polymer-supported nanosized hydrous manganese dioxide (HMO) for enhanced lead removal from waters. Science of the Total Environment, 2009, 407, 5471-5477.	3.9	111
104	Selective removal of Pb(II), Cd(II), and Zn(II) ions from waters by an inorganic exchanger $Zr(HPO3S)2$. Journal of Hazardous Materials, 2009, 170, 824-828.	6.5	32
105	Impregnating titanium phosphate nanoparticles onto a porous cation exchanger for enhanced lead removal from waters. Journal of Colloid and Interface Science, 2009, 331, 453-457.	5.0	42
106	Impregnating Zirconium Phosphate onto Porous Polymers for Lead Removal from Waters: Effect of Nanosized Particles and Polymer Chemistry. Industrial & Engineering Chemistry Research, 2009, 48, 4495-4499.	1.8	23
107	Adsorption of Pb2+, Zn2+, and Cd2+ from waters by amorphous titanium phosphate. Journal of Colloid and Interface Science, 2008, 318, 160-166.	5. 0	65
108	Adsorptive removal of phenol from aqueous phase by using a porous acrylic ester polymer. Journal of Hazardous Materials, 2008, 157, 293-299.	6.5	71

QINGRUI ZHANG

#	Article	IF	CITATIONS
109	A comparative study on lead sorption by amorphous and crystalline zirconium phosphates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 322, 108-112.	2.3	32
110	Selective Sorption of Lead, Cadmium and Zinc Ions by a Polymeric Cation Exchanger Containing Nano-Zr(HPO ₃ S) ₂ . Environmental Science & Exchange Technology, 2008, 42, 4140-4145.	4.6	107
111	Efficient Removal of Aromatic Sulfonates from Wastewater by a Recyclable Polymer: 2-Naphthalene Sulfonate as a Representative Pollutant. Environmental Science & Environmental Science & 2008, 42, 7411-7416.	4.6	54
112	Selective heavy metals removal from waters by amorphous zirconium phosphate: Behavior and mechanism. Water Research, 2007, 41, 3103-3111.	5.3	142
113	Improved Adsorption of 4-Nitrophenol onto a Novel Hyper-Cross-Linked Polymer. Environmental Science & Environmental Environmental Science & Environmental Envi	4.6	126