

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3386554/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Improving Sodium Storage Performance of Hard Carbon Anodes in Cyclic Ether Electrolytes by an Anion Receptor Additive. Journal of the Electrochemical Society, 2022, 169, 020561.	1.3	11
2	Organic Solvothermal Method Promoted Monoclinic Prussian Blue as a Superior Cathode for Na-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 6927-6935.	2.5	15
3	Polycrystalline Prussian White Aggregates as a High-Rate and Long-Life Cathode for High-Temperature Sodium-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 8123-8131.	2.5	10
4	Materials Design for Highâ€Safety Sodiumâ€ion Battery. Advanced Energy Materials, 2021, 11, 2000974.	10.2	282
5	Highly Crystallized Prussian Blue with Enhanced Kinetics for Highly Efficient Sodium Storage. ACS Applied Materials & Interfaces, 2021, 13, 3999-4007.	4.0	98
6	Long-Term Cyclability of NCM-811 at High Voltages in Lithium-Ion Batteries: an In-Depth Diagnostic Study. Chemistry of Materials, 2020, 32, 7796-7804.	3.2	152
7	Insights into the Improved Chemical Stability against Water of LiF-Incorporated Layered Oxide Cathodes for Sodium-Ion Batteries. , 2019, 1, 89-95.		39
8	Strategies for improving the storage performance of silicon-based anodes in lithium-ion batteries. Nano Research, 2019, 12, 1739-1749.	5.8	79
9	Understanding the Air-Exposure Degradation Chemistry at a Nanoscale of Layered Oxide Cathodes for Sodium-Ion Batteries. Nano Letters, 2019, 19, 182-188.	4.5	122
10	Modified Highâ€Nickel Cathodes with Stable Surface Chemistry Against Ambient Air for Lithiumâ€lon Batteries. Angewandte Chemie - International Edition, 2018, 57, 6480-6485.	7.2	234
11	Modified Highâ€Nickel Cathodes with Stable Surface Chemistry Against Ambient Air for Lithiumâ€lon Batteries. Angewandte Chemie, 2018, 130, 6590-6595.	1.6	38
12	High-Capacity and Long-Cycle Life Aqueous Rechargeable Lithium-Ion Battery with the FePO ₄ Anode. ACS Applied Materials & Interfaces, 2018, 10, 7061-7068.	4.0	34
13	Nitrogen-Doped Perovskite as a Bifunctional Cathode Catalyst for Rechargeable Lithium–Oxygen Batteries. ACS Applied Materials & Interfaces, 2018, 10, 5543-5550.	4.0	100
14	Improving the Performance of Hard Carbon//Na ₃ V ₂ O ₂ (PO ₄) ₂ F Sodium-Ion Full Cells by Utilizing the Adsorption Process of Hard Carbon. ACS Applied Materials & Interfaces, 2018, 10, 16581-16587.	4.0	37
15	Understanding the structural evolution and Na+ kinetics in honeycomb-ordered Oâ€23-Na3Ni2SbO6 cathodes. Nano Research, 2018, 11, 3258-3271.	5.8	35
16	Progress in Highâ€Voltage Cathode Materials for Rechargeable Sodiumâ€Ion Batteries. Advanced Energy Materials, 2018, 8, 1701785.	10.2	371
17	Layered Oxide Cathodes for Sodiumâ€lon Batteries: Phase Transition, Air Stability, and Performance. Advanced Energy Materials, 2018, 8, 1701912.	10.2	519
18	Polyanthraquinone-Triazine—A Promising Anode Material for High-Energy Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 37023-37030.	4.0	106

Ya You

#	Article	IF	CITATIONS
19	Selective CO Evolution from Photoreduction of CO ₂ on a Metal-Carbide-Based Composite Catalyst. Journal of the American Chemical Society, 2018, 140, 13071-13077.	6.6	65
20	Polymer lithium-garnet interphase for an all-solid-state rechargeable battery. Nano Energy, 2018, 53, 926-931.	8.2	103
21	Facile Synthesis of Carbon-Coated Spinel Li ₄ Ti ₅ O ₁₂ /Rutile-TiO ₂ Composites as an Improved Anode Material in Full Lithium-Ion Batteries with LiFePO ₄ @N-Doped Carbon Cathode. ACS Applied Materials &: Interfaces. 2017. 9. 6138-6143.	4.0	86
22	Photocatalytic CO ₂ Reduction by Carbon-Coated Indium-Oxide Nanobelts. Journal of the American Chemical Society, 2017, 139, 4123-4129.	6.6	434
23	Enhanced Visible-Light-Driven Photocatalytic H ₂ Evolution from Water on Noble-Metal-Free CdS-Nanoparticle-Dispersed Mo ₂ C@C Nanospheres. ACS Sustainable Chemistry and Engineering, 2017, 5, 5449-5456.	3.2	77
24	Solid-State Lithium Metal Batteries Promoted by Nanotechnology: Progress and Prospects. ACS Energy Letters, 2017, 2, 1385-1394.	8.8	314
25	A Honeycombâ€Layered Oxide Cathode for Sodiumâ€Ion Batteries with Suppressed P3–O1 Phase Transition. Advanced Energy Materials, 2017, 7, 1601698.	10.2	87
26	Builtâ€in Carbon Nanotube Network inside a Biomassâ€Derived Hierarchically Porous Carbon to Enhance the Performance of the Sulfur Cathode in a Liâ€S Battery. ChemNanoMat, 2016, 2, 712-718.	1.5	52
27	The Electrochemistry with Lithium versus Sodium of Selenium Confined To Slit Micropores in Carbon. Nano Letters, 2016, 16, 4560-4568.	4.5	140
28	Suppressing the P2–O2 Phase Transition of Na _{0.67} Mn _{0.67} Ni _{0.33} O ₂ by Magnesium Substitution for Improved Sodiumâ€lon Batteries. Angewandte Chemie - International Edition, 2016, 55, 7445-7449.	7.2	439
29	Subzeroâ€Temperature Cathode for a Sodiumâ€lon Battery. Advanced Materials, 2016, 28, 7243-7248.	11.1	406
30	Rechargeable dual-metal-ion batteries for advanced energy storage. Physical Chemistry Chemical Physics, 2016, 18, 9326-9333.	1.3	76
31	Rice husk-derived hierarchical silicon/nitrogen-doped carbon/carbon nanotube spheres as low-cost and high-capacity anodes for lithium-ion batteries. Nano Energy, 2016, 25, 120-127.	8.2	454
32	Combining Nitrogenâ€Doped Graphene Sheets and MoS ₂ : A Unique Film–Foam–Film Structure for Enhanced Lithium Storage. Angewandte Chemie, 2016, 128, 12975-12980.	1.6	44
33	Combining Nitrogenâ€Doped Graphene Sheets and MoS ₂ : A Unique Film–Foam–Film Structure for Enhanced Lithium Storage. Angewandte Chemie - International Edition, 2016, 55, 12783-12788.	7.2	172
34	Conductive Carbon Network inside a Sulfur-Impregnated Carbon Sponge: A Bioinspired High-Performance Cathode for Li–S Battery. ACS Applied Materials & Interfaces, 2016, 8, 22261-22269.	4.0	54
35	Graphene Sandwiched by Sulfur-Confined Mesoporous Carbon Nanosheets: A Kinetically Stable Cathode for Li–S Batteries. ACS Applied Materials & Interfaces, 2016, 8, 33704-33711.	4.0	56
36	Ion-Catalyzed Synthesis of Microporous Hard Carbon Embedded with Expanded Nanographite for Enhanced Lithium/Sodium Storage. Journal of the American Chemical Society, 2016, 138, 14915-14922.	6.6	360

Ya You

#	Article	IF	CITATIONS
37	An O3-type NaNi _{0.5} Mn _{0.5} O ₂ cathode for sodium-ion batteries with improved rate performance and cycling stability. Journal of Materials Chemistry A, 2016, 4, 17660-17664.	5.2	185
38	Suppressing the P2–O2 Phase Transition of Na _{0.67} Mn _{0.67} Ni _{0.33} O ₂ by Magnesium Substitution for Improved Sodiumâ€ion Batteries. Angewandte Chemie, 2016, 128, 7571-7575.	1.6	84
39	Li-Ion Conduction and Stability of Perovskite Li _{3/8} Sr _{7/16} Hf _{1/4} Ta _{3/4} O ₃ . ACS Applied Materials & Interfaces, 2016, 8, 14552-14557.	4.0	89
40	Nickel-Doped La _{0.8} Sr _{0.2} Mn _{1–<i><i>×</i></i>} Ni _{Ni_{<i>×</i>}O₃ Nanoparticles Containing Abundant Oxygen Vacancies as an Optimized Bifunctional Catalyst for Oxygen Cathode in Rechargeable Lithium–Air Batteries. ACS Applied Materials & amp; Interfaces, 2016, 8,}	4.0	176
41	6520-6528. Hierarchically micro/mesoporous activated graphene with a large surface area for high sulfur loading in Li–S batteries. Journal of Materials Chemistry A, 2015, 3, 4799-4802.	5.2	121
42	Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries. Nano Research, 2015, 8, 117-128.	5.8	292
43	A High apacity Tellurium@Carbon Anode Material for Lithiumâ€lon Batteries. Energy Technology, 2014, 2, 757-762.	1.8	66
44	High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries. Energy and Environmental Science, 2014, 7, 1643-1647.	15.6	852
45	A zero-strain insertion cathode material of nickel ferricyanide for sodium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 14061.	5.2	206