Lifeng Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3386060/publications.pdf Version: 2024-02-01

LIFENC WANC

#	Article	IF	CITATIONS
1	Bending behavior of sandwich composite structures with tunable 3D-printed core materials. Composite Structures, 2017, 175, 46-57.	5.8	272
2	Lattice Metamaterials with Mechanically Tunable Poisson's Ratio for Vibration Control. Physical Review Applied, 2017, 7, .	3.8	250
3	Exploiting negative Poisson's ratio to design 3D-printed composites with enhanced mechanical properties. Materials and Design, 2018, 142, 247-258.	7.0	234
4	Coâ€Continuous Composite Materials for Stiffness, Strength, and Energy Dissipation. Advanced Materials, 2011, 23, 1524-1529.	21.0	218
5	3D printed hierarchical honeycombs with shape integrity under large compressive deformations. Materials and Design, 2018, 137, 226-234.	7.0	189
6	Topology optimization of multi-material negative Poisson's ratio metamaterials using a reconciled level set method. CAD Computer Aided Design, 2017, 83, 15-32.	2.7	177
7	Size Dependence of the Thin-Shell Model for Carbon Nanotubes. Physical Review Letters, 2005, 95, 105501.	7.8	157
8	Mechanical properties of sandwich composites with 3d-printed auxetic and non-auxetic lattice cores under low velocity impact. Materials and Design, 2018, 160, 1305-1321.	7.0	145
9	Thermally Tunable, Selfâ€Healing Composites for Soft Robotic Applications. Macromolecular Materials and Engineering, 2014, 299, 1279-1284.	3.6	135
10	Enhancing indentation and impact resistance in auxetic composite materials. Composites Part B: Engineering, 2020, 198, 108229.	12.0	135
11	An experimental investigation of the temperature effect on the mechanics of carbon fiber reinforced polymer composites. Composites Science and Technology, 2018, 154, 53-63.	7.8	133
12	Hierarchical honeycomb lattice metamaterials with improved thermal resistance and mechanical properties. Composite Structures, 2016, 152, 395-402.	5.8	131
13	Elucidation of the Reinforcing Mechanism in Carbon Nanotube/Rubber Nanocomposites. ACS Nano, 2011, 5, 3858-3866.	14.6	117
14	3D printing of biomimetic composites with improved fracture toughness. Acta Materialia, 2019, 173, 61-73.	7.9	113
15	Biomimetic architected materials with improved dynamic performance. Journal of the Mechanics and Physics of Solids, 2019, 125, 178-197.	4.8	108
16	Periodic Bicontinuous Composites for High Specific Energy Absorption. Nano Letters, 2012, 12, 4392-4396.	9.1	95
17	Periodic co-continuous acoustic metamaterials with overlapping locally resonant and Bragg band gaps. Applied Physics Letters, 2014, 105, .	3.3	88
18	Hoberman-sphere-inspired lattice metamaterials with tunable negative thermal expansion. Composite Structures, 2018, 189, 586-597.	5.8	88

LIFENG WANG

#	Article	IF	CITATIONS
19	Wrinkled surface topographies of electrospun polymer fibers. Applied Physics Letters, 2009, 94, .	3.3	87
20	Mechanically tunable phononic band gaps in three-dimensional periodic elastomeric structures. International Journal of Solids and Structures, 2012, 49, 2881-2885.	2.7	85
21	Broadband and multiband vibration mitigation in lattice metamaterials with sinusoidally-shaped ligaments. Extreme Mechanics Letters, 2017, 17, 24-32.	4.1	77
22	Engineering lattice metamaterials for extreme property, programmability, and multifunctionality. Journal of Applied Physics, 2020, 127, .	2.5	77
23	Enhanced Energy Dissipation in Periodic Epoxy Nanoframes. Nano Letters, 2010, 10, 2592-2597.	9.1	68
24	Enhanced fracture toughness in architected interpenetrating phase composites by 3D printing. Composites Science and Technology, 2018, 167, 251-259.	7.8	67
25	Designing Phononic Crystals with Wide and Robust Band Gaps. Physical Review Applied, 2018, 9, .	3.8	66
26	Bio-inspired heterogeneous composites for broadband vibration mitigation. Scientific Reports, 2016, 5, 17865.	3.3	59
27	Multiband wave filtering and waveguiding in bio-inspired hierarchical composites. Extreme Mechanics Letters, 2015, 5, 18-24.	4.1	57
28	Learning from nature: Use material architecture to break the performance tradeoffs. Materials and Design, 2019, 168, 107650.	7.0	55
29	Harnessing out-of-plane deformation to design 3D architected lattice metamaterials with tunable Poisson's ratio. Scientific Reports, 2017, 7, 8949.	3.3	50
30	Combination of stiffness, strength, and toughness in 3D printed interlocking nacre-like composites. Extreme Mechanics Letters, 2020, 35, 100621.	4.1	50
31	Direct Quantification of the Mechanical Anisotropy and Fracture of an Individual Exoskeleton Layer via Uniaxial Compression of Micropillars. Nano Letters, 2011, 11, 3868-3874.	9.1	49
32	Anisotropic design of a multilayered biological exoskeleton . Journal of Materials Research, 2009, 24, 3477-3494.	2.6	48
33	Bioinspired Structural Material Exhibiting Post‥ield Lateral Expansion and Volumetric Energy Dissipation During Tension. Advanced Functional Materials, 2010, 20, 3025-3030.	14.9	46
34	Harnessing structural hierarchy to design stiff and lightweight phononic crystals. Extreme Mechanics Letters, 2016, 9, 91-96.	4.1	45
35	Prediction of the Effective Thermal Conductivity of Hollow Sphere Foams. ACS Applied Energy Materials, 2018, 1, 1146-1157.	5.1	45
36	Enhanced mechanical properties of carbon nanotube networks by mobile and discrete binders. Carbon, 2013, 64, 237-244.	10.3	44

LIFENG WANG

#	Article	IF	CITATIONS
37	Tunable band gaps in bio-inspired periodic composites with nacre-like microstructure. Journal of Applied Physics, 2014, 116, .	2.5	37
38	Plastic Dissipation Mechanisms in Periodic Microframe‣tructured Polymers. Advanced Functional Materials, 2009, 19, 1343-1350.	14.9	36
39	Enhanced stiffness, strength and energy absorption for co-continuous composites with liquid filler. Composite Structures, 2015, 128, 274-283.	5.8	35
40	Enhanced Mechanical Properties of Prestressed Multiâ€Walled Carbon Nanotubes. Small, 2008, 4, 733-737.	10.0	30
41	Growth strain-induced wrinkled membrane morphology of white blood cells. Soft Matter, 2011, 7, 11319.	2.7	30
42	3D printed architected hollow sphere foams with low-frequency phononic band gaps. Additive Manufacturing, 2019, 30, 100842.	3.0	29
43	Acoustic band gaps of three-dimensional periodic polymer cellular solids with cubic symmetry. Journal of Applied Physics, 2013, 114, .	2.5	28
44	Ultrawide coupled bandgap in hybrid periodic system with multiple resonators. Journal of Applied Physics, 2020, 127, .	2.5	25
45	Mechanics of Indentation into Micro- and Nanoscale Forests of Tubes, Rods, or Pillars. Journal of Engineering Materials and Technology, Transactions of the ASME, 2011, 133, .	1.4	24
46	Anomalous elastic buckling of layered crystalline materials in the absence of structure slenderness. Journal of the Mechanics and Physics of Solids, 2016, 88, 83-99.	4.8	24
47	Modeling the Large Deformation and Microstructure Evolution of Nonwoven Polymer Fiber Networks. Journal of Applied Mechanics, Transactions ASME, 2019, 86, .	2.2	21
48	Tunable stimulus-responsive friction mechanisms of polyelectrolyte films and tube forests. Soft Matter, 2012, 8, 8642.	2.7	19
49	Instability-Triggered Triply Negative Mechanical Metamaterial. Physical Review Applied, 2019, 12, .	3.8	19
50	Ultrawide bandgap in metamaterials via coupling of locally resonant and Bragg bandgaps. Acta Mechanica, 2022, 233, 477-493.	2.1	17
51	Mechanics of network materials with responsive crosslinks. Comptes Rendus - Mecanique, 2014, 342, 264-272.	2.1	16
52	Geometrically Controlled Mechanically Responsive Polyelectrolyte Tube Arrays. Advanced Materials, 2011, 23, 4667-4673.	21.0	14
53	The effect of material mixing on interfacial stiffness and strength of multi-material additive manufacturing. Additive Manufacturing, 2020, 36, 101502.	3.0	13
54	Harnessing 3D printed residual stress to design heat-shrinkable metamaterials. Results in Physics, 2018, 11, 85-95.	4.1	12

LIFENG WANG

#	Article	IF	CITATIONS
55	Theoretical prediction of effective stiffness of nonwoven fibrous networks with straight and curved nanofibers. Composites Part A: Applied Science and Manufacturing, 2021, 143, 106311.	7.6	10
56	Reversible high-pressure carbon nanotube vessel. Physical Review B, 2010, 81, .	3.2	7
57	Effect of Nanosecond Laser Beam Shaping on Cu(In,Ga)Se ₂ Thin Film Solar Cell Scribing. ACS Applied Energy Materials, 2019, 2, 5057-5065.	5.1	6
58	3D Printing of Biomimetic Composites with Improved Fracture Toughness. SSRN Electronic Journal, 0, ,	0.4	3
59	Elastic anisotropy and wave propagation properties of multifunctional hollow sphere foams. Composite Structures, 2022, , 115540.	5.8	2