
Pannuru Venkatesu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3385315/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Contemporary Advancement of Cholinium-Based Ionic Liquids for Protein Stability and Long-Term Storage: Past, Present, and Future Outlook. ACS Sustainable Chemistry and Engineering, 2022, 10, 4323-4344.	3.2	15
2	Interactions between a biomedical thermoresponsive polymer and imidazolium-based ionic liquids: A comprehensive biophysical investigation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641, 128619.	2.3	4
3	Current understanding and insights towards protein stabilization and activation in deep eutectic solvents as sustainable solvent media. Physical Chemistry Chemical Physics, 2022, 24, 13474-13509.	1.3	31
4	Cholinium-Based Ionic Liquids as Efficient Media for Improving the Structural and Thermal Stability of Immunoglobulin G Antibodies. ACS Sustainable Chemistry and Engineering, 2022, 10, 5404-5420.	3.2	13
5	Gold nanospheres/nanorods as highly promising candidates for the hydrophilic/hydrophobic balance of poly(<i>N</i> -vinylcaprolactam): a thoughtful design of nanocomposites. New Journal of Chemistry, 2022, 46, 12381-12393.	1.4	3
6	Tunnelling the structural insights between poly(N-isopropylacrylamide) and imidazolium sulfate ionic liquids. Journal of Molecular Liquids, 2022, 360, 119404.	2.3	4
7	Cholinium-Based Ionic Liquids Attenuate the Amyloid Fibril Formation of Lysozyme: A Greener Concept of Antiamyloidogenic Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2022, 10, 9242-9253.	3.2	4
8	How does the addition of shape distinct gold nanoparticles influence on the conformational transition of poly(N-isopropylacrylamide)?. Journal of Colloid and Interface Science, 2021, 582, 478-487.	5.0	10
9	Insight into interactions between enzyme and biological buffers: Enhanced thermal stability of stem bromelain. Journal of Molecular Liquids, 2021, 322, 114526.	2.3	3
10	Understanding the close encounter of heme proteins with carboxylated multiwalled carbon nanotubes: a case study of contradictory stability trend for hemoglobin and myoglobin. Physical Chemistry Chemical Physics, 2021, 23, 19740-19751.	1.3	3
11	Biological Stimuli-Induced Phase Transition of a Synthesized Block Copolymer: Preferential Interactions between PNIPAM- <i>b</i> >PNVCL and Heme Proteins. Langmuir, 2021, 37, 1682-1696.	1.6	20
12	Assessing the Compatibility of Mono-, Di-, and Tri-Cholinium Citrate Ionic Liquids for the Stability and Activity of α-Chymotrypsin. ACS Sustainable Chemistry and Engineering, 2021, 9, 4812-4822.	3.2	7
13	Protein immobilization on graphene oxide or reduced graphene oxide surface and their applications: Influence over activity, structural and thermal stability of protein. Advances in Colloid and Interface Science, 2021, 289, 102367.	7.0	64
14	Ionic Liquid-Modified Gold Nanoparticles for Enhancing Antimicrobial Activity and Thermal Stability of Enzymes. ACS Applied Nano Materials, 2021, 4, 3185-3196.	2.4	23
15	Evaluation of Utilizing Functionalized Graphene Oxide Nanoribbons as Compatible Biomaterial for Lysozyme. ACS Applied Bio Materials, 2021, 4, 6112-6124.	2.3	6
16	The biocompatible validity of amino acid ionic liquid mediated gold nanoparticles for enhanced activity and structural stability of papain. Dalton Transactions, 2021, 50, 10455-10470.	1.6	4
17	Exploring the Counteracting and Refolding Ability of Choline-Based Ionic Liquids toward Crowding Environment-Induced Changes in HSA Structure. ACS Sustainable Chemistry and Engineering, 2021, 9, 422-437.	3.2	7
18	Role of protein-copolymer assembly in controlling micellization process of amphiphilic triblock copolymer. Journal of Colloid and Interface Science, 2021, 608, 2142-2157.	5.0	5

#	Article	IF	CITATIONS
19	Tweaking Behavior of Hydrogen Bond Donor in Choline Chloride-Based Deep Eutectic Solvents for Regulating the Phase Transition of Poly(<i>N</i> -vinylcaprolactam): A Sustainable Medium for an Early Hydrophobic Collapse. ACS Sustainable Chemistry and Engineering, 2021, 9, 14335-14344.	3.2	14
20	Experimental and molecular docking studies in understanding the biomolecular interactions between stem bromelain and imidazolium-based ionic liquids. Journal of Molecular Liquids, 2020, 297, 111785.	2.3	13
21	Biomass-derived carbon helices induced phase transition in poly(N-ispropylacrylamide): A sustainable tailoring of coil-globule transition in thermoresponsive polymer. Colloids and Surfaces B: Biointerfaces, 2020, 187, 110637.	2.5	4
22	Unravelling the interactions between biomedical thermoresponsive polymer and biocompatible ionic liquids. Journal of Molecular Liquids, 2020, 300, 112362.	2.3	10
23	Implications of Imidazolium-Based Ionic Liquids as Refolding Additives for Urea-Induced Denatured Serum Albumins. ACS Sustainable Chemistry and Engineering, 2020, 8, 604-612.	3.2	27
24	A biophysical strategy to examine the impact of newly synthesized polymerizable ammonium-based ionic liquids on the structural stability and proteolytic activity of stem bromelain. International Journal of Biological Macromolecules, 2020, 151, 957-966.	3.6	5
25	Can stem bromelain, a pineapple waste product, be used as a drug alternative? A mechanistic insight into protein–protein interactions. New Journal of Chemistry, 2020, 44, 19450-19458.	1.4	0
26	Excellency of pyrimidinyl moieties containing α-aminophosphonates over benzthiazolyl moieties for thermal and structural stability of stem bromelain. International Journal of Biological Macromolecules, 2020, 165, 2010-2021.	3.6	6
27	Monitoring phase transition behavior of Poly(N-vinylcaprolactam) via nanostructure-based functionalized carbon nanotubes. Journal of Molecular Liquids, 2020, 318, 114062.	2.3	6
28	Structural features and oligomeric nature of human podocin domain. Biochemistry and Biophysics Reports, 2020, 23, 100774.	0.7	8
29	A novel amalgamation of deep eutectic solvents and crowders as biocompatible solvent media for enhanced structural and thermal stability of bovine serum albumin. Physical Chemistry Chemical Physics, 2020, 22, 24410-24422.	1.3	21
30	Sustainable Solvothermal Conversion of Waste Biomass to Functional Carbon Material: Extending Its Utility as a Biocompatible Cosolvent for Lysozyme. ACS Biomaterials Science and Engineering, 2020, 6, 4881-4892.	2.6	9
31	Effect of temperature on molecular interactions between tri(butyl)methylphosphonium methylsulfate and furfural. Journal of Chemical Thermodynamics, 2020, 149, 106150.	1.0	5
32	Protein packaging in ionic liquid mixtures: an ecofriendly approach towards the improved stability of β-lactoglobulin in cholinium-based mixed ionic liquids. Physical Chemistry Chemical Physics, 2020, 22, 14811-14821.	1.3	20
33	Insulin-induced conformational transition of fluorescent copolymers: a perspective of self-assembly between protein and micellar solutions of smart copolymers. Physical Chemistry Chemical Physics, 2020, 22, 9573-9586.	1.3	10
34	Multifunctional solvothermal carbon derived from alginate using †̃water-in-deep eutectic solvents' for enhancing enzyme activity. Chemical Communications, 2020, 56, 9659-9662.	2.2	21
35	Expanding the Potential Role of Deep Eutectic Solvents toward Facilitating the Structural and Thermal Stability of α-Chymotrypsin. ACS Sustainable Chemistry and Engineering, 2020, 8, 10151-10160.	3.2	40
36	Biocompatibility of surface-modified gold nanoparticles towards red blood cells and haemoglobin. Applied Surface Science, 2020, 512, 145573.	3.1	33

#	Article	IF	CITATIONS
37	The role of osmolytes in the temperature-triggered conformational transition of poly(<i>N</i> -vinylcaprolactam): an experimental and computational study. Physical Chemistry Chemical Physics, 2020, 22, 5301-5313.	1.3	5
38	How does cholinium cation surpass tetraethylammonium cation in amino acid-based ionic liquids for thermal and structural stability of serum albumins?. International Journal of Biological Macromolecules, 2020, 148, 615-626.	3.6	20
39	How does bovine serum albumin sustain in saccharomate® derived from pine tree biomass?. Colloids and Surfaces B: Biointerfaces, 2020, 191, 110975.	2.5	1
40	In-depth understanding of a nano-bio interface between lysozyme and Au NP-immobilized N-doped reduced graphene oxide 2-D scaffolds. Nanoscale Advances, 2020, 2, 2146-2159.	2.2	15
41	Functionalized carbon nanotubes modulate the phase transition behavior of thermoresponsive polymer via hydrophilic-hydrophobic balance. Polymer, 2019, 178, 121573.	1.8	20
42	Comprehensive Insight into the Protein–Surface Biomolecular Interactions on a Smart Material: Complex Formation between Poly(<i>N</i> -vinyl Caprolactam) and Heme Protein. Journal of Physical Chemistry B, 2019, 123, 6331-6344.	1.2	16
43	Quantifying the influence of ionic liquid on the phase behaviour of a biomedical thermoresponsive polymer: A biophysical experimental approach. Reactive and Functional Polymers, 2019, 143, 104327.	2.0	4
44	Efficacy of several additives to modulate the phase behavior of biomedical polymers: A comprehensive and comparative outlook. Advances in Colloid and Interface Science, 2019, 274, 102042.	7.0	8
45	Profiling the molecular interactions between a promising thermoresponsive polymer and ionic liquid: A biophysical outlook. Journal of Molecular Liquids, 2019, 278, 716-721.	2.3	7
46	Influence of biological stimuli on the phase behaviour of a biomedical thermoresponsive polymer: A comparative investigation of hemeproteins. Journal of Colloid and Interface Science, 2019, 541, 1-11.	5.0	22
47	Scrutinizing the effect of various nitrogen containing additives on the micellization behavior of a triblock copolymer. Journal of Colloid and Interface Science, 2019, 553, 655-665.	5.0	9
48	Does macromolecular crowding compatible with enzyme stem bromelain structure and stability?. International Journal of Biological Macromolecules, 2019, 131, 527-535.	3.6	14
49	Designing biological fluid inspired molecularly crowded ionic liquid media as a sustainable packaging platform for cytochrome <i>c</i> . Chemical Communications, 2019, 55, 5747-5750.	2.2	18
50	Strategic planning of proteins in ionic liquids: future solvents for the enhanced stability of proteins against multiple stresses. Physical Chemistry Chemical Physics, 2019, 21, 23269-23282.	1.3	26
51	Does poly(ionic liquid) modulate the non-covalent interactions of chicken egg white lysozyme? Elucidation of biomolecular interactions between biomolecules and macromolecular solvents. New Journal of Chemistry, 2019, 43, 16759-16766.	1.4	7
52	Insight into impact of choline-based ionic liquids on bovine β-lactoglobulin structural analysis: Unexpected high thermal stability of protein. International Journal of Biological Macromolecules, 2019, 126, 1-10.	3.6	27
53	An efficient study to reach physiological temperature with poly(N-isopropylacrylamide) in presence of two differently behaving additives. Journal of Colloid and Interface Science, 2019, 538, 62-74.	5.0	7
54	Undesirable impact on structure and stability of insulin on addition of (+)-catechin hydrate with sugar. Archives of Biochemistry and Biophysics, 2018, 646, 64-71.	1.4	3

#	Article	IF	CITATIONS
55	The effects of biological buffers TRIS, TAPS, TES on the stability of lysozyme. International Journal of Biological Macromolecules, 2018, 112, 720-727.	3.6	13
56	Crowded milieu tuning the stability and activity of stem bromelain. International Journal of Biological Macromolecules, 2018, 109, 114-123.	3.6	11
57	Influence of additives on thermoresponsive polymers in aqueous media: a case study of poly(<i>N</i> -isopropylacrylamide). Physical Chemistry Chemical Physics, 2018, 20, 9717-9744.	1.3	44
58	Innovative aspects of protein stability in ionic liquid mixtures. Biophysical Reviews, 2018, 10, 841-846.	1.5	35
59	Assessing the efficiency of imidazolium-based ionic liquids on the phase behavior of a synthetic biomedical thermoresponsive polymer. Journal of Colloid and Interface Science, 2018, 511, 174-183.	5.0	36
60	How Does a Smart Polymer Respond to Imidazolium-Based Ionic Liquids?. ACS Sustainable Chemistry and Engineering, 2018, 6, 1400-1410.	3.2	15
61	Exploring the Effect of Choline-Based Ionic Liquids on the Stability and Activity of Stem Bromelain. Journal of Physical Chemistry B, 2018, 122, 10435-10444.	1.2	28
62	Unravelling the role of polyols with increasing carbon chain length and OH groups on the phase transition behavior of PNIPAM. New Journal of Chemistry, 2018, 42, 13708-13717.	1.4	9
63	Does choline-based amino acid ionic liquid behave as a biocompatible solvent for stem bromelain structure?. Process Biochemistry, 2018, 74, 77-85.	1.8	25
64	Changing relations between proteins and osmolytes: a choice of nature. Physical Chemistry Chemical Physics, 2018, 20, 20315-20333.	1.3	35
65	Effect of Imidazolium-Based Ionic Liquids on the Structure and Stability of Stem Bromelain: Concentration and Alkyl Chain Length Effect. Journal of Physical Chemistry B, 2018, 122, 7522-7529.	1.2	18
66	Direct conversion of lignocellulosic biomass to biomimetic tendril-like functional carbon helices: a protein friendly host for cytochrome C. Green Chemistry, 2018, 20, 3711-3716.	4.6	19
67	Comprehensive Computational and Experimental Analysis of Biomaterial toward the Behavior of Imidazolium-Based Ionic Liquids: An Interplay between Hydrophilic and Hydrophobic Interactions. Journal of Physical Chemistry B, 2017, 121, 4909-4922.	1.2	17
68	Coherent Experimental and Simulation Approach To Explore the Underlying Mechanism of Denaturation of Stem Bromelain in Osmolytes. Journal of Physical Chemistry B, 2017, 121, 6456-6470.	1.2	12
69	An unexplored remarkable PNIPAM-osmolyte interaction study: An integrated experimental and simulation approach. Journal of Colloid and Interface Science, 2017, 504, 417-428.	5.0	33
70	Biocompatibility of ionic liquids towards protein stability: A comprehensive overview on the current understanding and their implications. International Journal of Biological Macromolecules, 2017, 96, 611-651.	3.6	83
71	A molecular interplay for osmolytes-induced phase behaviour of poly (vinyl methyl ether). Polymer, 2017, 131, 224-233.	1.8	11
72	Influence of cholinium-based ionic liquids on the structural stability and activity of α-chymotrypsin. New Journal of Chemistry, 2017, 41, 13902-13911.	1.4	55

#	Article	IF	CITATIONS
73	A comparative study of the stability of stem bromelain based on the variation of anions of imidazolium-based ionic liquids. Journal of Molecular Liquids, 2017, 246, 178-186.	2.3	29
74	Long-term protein packaging in cholinium-based ionic liquids: improved catalytic activity and enhanced stability of cytochrome c against multiple stresses. Green Chemistry, 2017, 19, 4900-4911.	4.6	83
75	New endeavours involving the cooperative behaviour of TMAO and urea towards the globular state of poly(N-isopropylacrylamide). RSC Advances, 2017, 7, 34023-34033.	1.7	14
76	Sustained Stability and Activity of Lysozyme in Choline Chloride against pH Induced Denaturation. ACS Sustainable Chemistry and Engineering, 2017, 5, 8344-8355.	3.2	31
77	Influence of temperature on thermophysical properties of tri(butyl)methylphosphonium methyl sulfate + N -methyl-2-pyrrolidone. Journal of Molecular Liquids, 2017, 242, 375-381.	2.3	7
78	The influence of various alkylammonium-based ionic liquids on the hydration state of temperature-responsive polymer. Journal of Molecular Liquids, 2017, 225, 186-194.	2.3	9
79	Thermo-responsive triblock copolymer phase transition behaviour in imidazolium-based ionic liquids: Role of the effect of alkyl chain length of cations. Journal of Colloid and Interface Science, 2017, 485, 183-191.	5.0	29
80	Deciphering the Interactions of Bromelain with Carbon Nanotubes: Role of Protein as Well as Carboxylated Multiwalled Carbon Nanotubes in a Complexation Mechanism. Journal of Physical Chemistry C, 2016, 120, 15436-15445.	1.5	16
81	Refolding effects of partially immiscible ammonium-based ionic liquids on the urea-induced unfolded lysozyme structure. Physical Chemistry Chemical Physics, 2016, 18, 12419-12422.	1.3	27
82	Comprehensive Evaluation of Biomolecular Interactions between Protein and Amino Acid Basedâ€lonic Liquids: A Comparable Study between [Bmim][Br] and [Bmim][Gly] Ionic Liquids. ChemistrySelect, 2016, 1, 3510-3519.	0.7	32
83	A Distinct Proof on Interplay between Trehalose and Guanidinium Chloride for the Stability of Stem Bromelain. Journal of Physical Chemistry B, 2016, 120, 8863-8872.	1.2	21
84	A study of the molecular interactions between ammonium-based ionic liquids and N , N -dimethylacetamide. Journal of Molecular Liquids, 2016, 223, 687-698.	2.3	2
85	Probing Molecular Interactions between Ammonium-Based Ionic Liquids and <i>N</i> , <i>N</i> -Dimethylacetamide: A Combined FTIR, DLS, and DFT Study. Journal of Physical Chemistry B, 2016, 120, 12584-12595.	1.2	16
86	Does 1-Allyl-3-methylimidazolium chloride Act as a Biocompatible Solvent for Stem Bromelain?. Journal of Physical Chemistry B, 2016, 120, 5625-5633.	1.2	19
87	Structural insights into the effect of cholinium-based ionic liquids on the critical micellization temperature of aqueous triblock copolymers. Physical Chemistry Chemical Physics, 2016, 18, 8342-8351.	1.3	32
88	A study of the conformational changes of β-lactoglobulin in the vicinity of critical point of binary mixed solvents. New Journal of Chemistry, 2016, 40, 1747-1755.	1.4	3
89	Solution Behavior of Triblock Copolymer in the Presence of Ionic Liquids: A Comparative Study of Two Ionic Liquids Possessing Different Cations with Same Anion. ACS Sustainable Chemistry and Engineering, 2016, 4, 2412-2421.	3.2	35
90	Molecular interactions between ammonium-based ionic liquids and molecular solvents: current progress and challenges. Physical Chemistry Chemical Physics, 2016, 18, 8278-8326.	1.3	40

#	Article	IF	CITATIONS
91	Exploring the structure and stability of amino acids and glycine peptides in biocompatible ionic liquids. RSC Advances, 2016, 6, 18763-18777.	1.7	13
92	Unprecedented Improvement in the Stability of Hemoglobin in the Presence of Promising Green Solvent 1-Allyl-3-methylimidazolium Chloride. ACS Sustainable Chemistry and Engineering, 2016, 4, 413-421.	3.2	40
93	Analysis of the driving force that rule the stability of lysozyme in alkylammonium-based ionic liquids. International Journal of Biological Macromolecules, 2015, 81, 1074-1081.	3.6	30
94	Quantifying the co-solvent effects on trypsin from the digestive system of carp Catla catla by biophysical techniques and molecular dynamics simulations. RSC Advances, 2015, 5, 43023-43035.	1.7	3
95	The Overriding Roles of Concentration and Hydrophobic Effect on Structure and Stability of Heme Protein Induced by Imidazolium-Based Ionic Liquids. Journal of Physical Chemistry B, 2015, 119, 8357-8368.	1.2	33
96	Endeavour to simplify the frustrated concept of protein-ammonium family ionic liquid interactions. Physical Chemistry Chemical Physics, 2015, 17, 20466-20484.	1.3	54
97	Evaluating the transfer free energies of amino acids from water to ammonium-based ionic liquids at 298.15K. Journal of Molecular Liquids, 2015, 208, 130-136.	2.3	5
98	Effect of the Alkyl Chain Length of the Cation on the Interactions between Water and Ammonium-Based Ionic Liquids: Experimental and COSMO-RS Studies. Industrial & Engineering Chemistry Research, 2015, 54, 9013-9026.	1.8	41
99	The biological stimuli for governing the phase transition temperature of the "smart―polymer PNIPAM in water. Colloids and Surfaces B: Biointerfaces, 2015, 135, 588-595.	2.5	37
100	Insights into the interactions between enzyme and co-solvents: Stability and activity of stem bromelain. International Journal of Biological Macromolecules, 2015, 73, 189-201.	3.6	39
101	A comparative study of the effects of the Hofmeister series anions of the ionic salts and ionic liquids on the stability of α-chymotrypsin. New Journal of Chemistry, 2015, 39, 938-952.	1.4	58
102	A green approach to offset the perturbation action of 1-butyl-3-methylimidazolium iodide on α-chymotrypsin. Physical Chemistry Chemical Physics, 2015, 17, 184-190.	1.3	35
103	Influence of Hydroxyl Group Position and Temperature on Thermophysical Properties of Tetraalkylammonium Hydroxide Ionic Liquids with Alcohols. PLoS ONE, 2014, 9, e86530.	1.1	36
104	Thermodynamic Contribution of Amino Acids in Ionic Liquids Towards Protein Stability. Current Biochemical Engineering, 2014, 1, 125-140.	1.3	9
105	A Comprehensive Experimental Study to Understand the Hofmeister Series of Anions of Aqueous Imidazolium-Based Ionic Liquids on Glycine Peptides. Industrial & Engineering Chemistry Research, 2014, 53, 19628-19642.	1.8	8
106	Does the stability of proteins in ionic liquids obey the Hofmeister series?. International Journal of Biological Macromolecules, 2014, 63, 244-253.	3.6	104
107	The stability of insulin in the presence of short alkyl chain imidazolium-based ionic liquids. RSC Advances, 2014, 4, 4487-4499.	1.7	48
108	Interactions of ionic liquids with hydration layer of poly(N-isopropylacrylamide): comprehensive analysis of biophysical techniques results. Physical Chemistry Chemical Physics, 2014, 16, 10708-10718.	1.3	39

#	Article	IF	CITATIONS
109	Quantitative evaluation of the ability of ionic liquids to offset the cold-induced unfolding of proteins. Physical Chemistry Chemical Physics, 2014, 16, 15806.	1.3	24
110	Thermophysical properties for the mixed solvents of N-methyl-2-pyrrolidone with some of the imidazolium-based ionic liquids. Journal of Molecular Liquids, 2014, 198, 11-20.	2.3	62
111	Unexpected effects of the alteration of structure and stability of myoglobin and hemoglobin in ammonium-based ionic liquids. Physical Chemistry Chemical Physics, 2014, 16, 5514.	1.3	84
112	Influence of ionic liquids on the critical micellization temperature of a tri-block co-polymer in aqueous media. Journal of Colloid and Interface Science, 2014, 420, 166-173.	5.0	34
113	Thermophysical Properties of Aqueous Solution of Ammonium-Based Ionic Liquids. Journal of Physical Chemistry B, 2014, 118, 5971-5982.	1.2	64
114	Variation in the structural changes of myoglobin in the presence of several protic ionic liquid. International Journal of Biological Macromolecules, 2014, 69, 114-123.	3.6	52
115	Exploring the thermal stability of α-chymotrypsin in protic ionic liquids. Process Biochemistry, 2013, 48, 462-470.	1.8	64
116	Prevention of insulin self-aggregation by a protic ionic liquid. RSC Advances, 2013, 3, 362-367.	1.7	64
117	Influence of anion on thermophysical properties of ionic liquids with polar solvent. Journal of Chemical Thermodynamics, 2013, 58, 269-278.	1.0	41
118	Effect of anion variation on the thermophysical properties of triethylammonium based protic ionic liquids with polar solvent. Thermochimica Acta, 2013, 556, 75-88.	1.2	56
119	Interruption of hydration state of thermoresponsive polymer, poly(N-isopropylacrylamide) in guanidinium hydrochloride. Polymer, 2013, 54, 791-797.	1.8	14
120	The Solubility and Stability of Amino Acids in Biocompatible Ionic Liquids. Protein and Peptide Letters, 2013, 21, 15-24.	0.4	32
121	Water and a protic ionic liquid acted as refolding additives for chemically denatured enzymes. Organic and Biomolecular Chemistry, 2012, 10, 7475.	1.5	51
122	Influence of biocompatible ammonium ionic liquids on the solubility of l-alanine and l-valine in water. Fluid Phase Equilibria, 2012, 335, 39-45.	1.4	26
123	TMAO and sorbitol attenuate the deleterious action of atmospheric pressure non-thermal jet plasma on α-chymotrypsin. RSC Advances, 2012, 2, 7146.	1.7	21
124	Polyacrylic acid polymer modulates the UCST-type phase behavior of ionic liquid and water. RSC Advances, 2012, 2, 6939.	1.7	12
125	Effect of structural variations in cations of ionic liquids on the coexistence curve of isobutyric acid and water. New Journal of Chemistry, 2012, 36, 2266.	1.4	7
126	Influence of protic ionic liquids on the structure and stability of succinylated Con A. International Journal of Biological Macromolecules, 2012, 51, 119-128.	3.6	38

#	Article	IF	CITATIONS
127	Effects of atmospheric-pressure non-thermal plasma jets on enzyme solutions. Journal of the Korean Physical Society, 2012, 60, 959-964.	0.3	25
128	Overview of the Stability of α-Chymotrypsin in Different Solvent Media. Chemical Reviews, 2012, 112, 4283-4307.	23.0	211
129	Destruction of hydrogen bonds of poly(N-isopropylacrylamide) aqueous solution by trimethylamineN-oxide. Journal of Chemical Physics, 2012, 136, 234904.	1.2	35
130	Influence of Alkyl Chain Length and Temperature on Thermophysical Properties of Ammonium-Based Ionic Liquids with Molecular Solvent. Journal of Physical Chemistry B, 2012, 116, 4561-4574.	1.2	68
131	Effect of polyols on the native structure of α-chymotrypsin: A comparable study. Thermochimica Acta, 2012, 536, 55-62.	1.2	47
132	Thermodynamic contributions of peptide backbone unit from water to biocompatible ionic liquids at T=298.15K. Journal of Chemical Thermodynamics, 2012, 45, 122-136.	1.0	34
133	Ammonium ionic liquids as convenient co-solvents for the structure and stability of succinylated Con A. Journal of Chemical Thermodynamics, 2012, 52, 78-88.	1.0	37
134	Activity and stability of α-chymotrypsin in biocompatible ionic liquids: enzyme refolding by triethyl ammonium acetate. Physical Chemistry Chemical Physics, 2011, 13, 2788-2796.	1.3	185
135	Temperature Dependence Measurements and Structural Characterization of Trimethyl Ammonium Ionic Liquids with a Highly Polar Solvent. Journal of Physical Chemistry B, 2011, 115, 10086-10097.	1.2	65
136	Ionic Liquid Modifies the Lower Critical Solution Temperature (LCST) of Poly(<i>N</i> -isopropylacrylamide) in Aqueous Solution. Journal of Physical Chemistry B, 2011, 115, 4752-4757.	1.2	84
137	Thermodynamic characterization of the biocompatible ionic liquid effects on protein model compounds and their functional groups. Physical Chemistry Chemical Physics, 2011, 13, 6566.	1.3	98
138	A protic ionic liquid attenuates the deleterious actions of urea on α-chymotrypsin. Physical Chemistry Chemical Physics, 2011, 13, 17023.	1.3	85
139	Refolding of urea-induced denaturation of model proteins by trimethylamine N-oxide. Thermochimica Acta, 2011, 526, 143-150.	1.2	14
140	Temperature effect on the molecular interactions between two ammonium ionic liquids and dimethylsulfoxide. Journal of Molecular Liquids, 2011, 164, 218-225.	2.3	44
141	Thermophysical properties of dimethylsulfoxide with ionic liquids at various temperatures. Fluid Phase Equilibria, 2011, 304, 35-43.	1.4	77
142	Measurements and Molecular Interactions for N,N-Dimethylformamide with Ionic Liquid Mixed Solvents. Journal of Physical Chemistry B, 2010, 114, 6126-6133.	1.2	92
143	Trehalose protects urea-induced unfolding of α-chymotrypsin. International Journal of Biological Macromolecules, 2010, 47, 540-545.	3.6	39
144	Influence of Osmolytes and Denaturants on the Structure and Enzyme Activity of α-Chymotrypsin. Journal of Physical Chemistry B, 2010, 114, 1471-1478.	1.2	112

#	Article	IF	CITATIONS
145	Temperature Effect on the Molecular Interactions between Ammonium Ionic Liquids and <i>N</i> , <i>N</i> .Dimethylformamide. Journal of Physical Chemistry B, 2010, 114, 13415-13425.	1.2	62
146	Excess Molar Enthalpies and Vaporâ^Liquid Equilibrium for <i>N</i> -Methyl-2-pyrrolidone with Ketones. Journal of Chemical & Engineering Data, 2010, 55, 69-73.	1.0	28
147	Vapor–liquid equilibrium for the binary mixtures of dimethylsulfoxide with substituted benzenes. Fluid Phase Equilibria, 2007, 262, 32-36.	1.4	18
148	Excess enthalpies and (vapour+liquid) equilibrium data for the binary mixtures of dimethylsulphoxide with ketones. Journal of Chemical Thermodynamics, 2007, 39, 1661-1666.	1.0	17