Pannuru Venkatesu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3385315/publications.pdf

Version: 2024-02-01

148 papers 4,511 citations

87723 38 h-index 143772 57 g-index

149 all docs

149 docs citations

149 times ranked 2622 citing authors

#	Article	IF	CITATIONS
1	Overview of the Stability of \hat{l}_{\pm} -Chymotrypsin in Different Solvent Media. Chemical Reviews, 2012, 112, 4283-4307.	23.0	211
2	Activity and stability of \hat{l} ±-chymotrypsin in biocompatible ionic liquids: enzyme refolding by triethyl ammonium acetate. Physical Chemistry Chemical Physics, 2011, 13, 2788-2796.	1.3	185
3	Influence of Osmolytes and Denaturants on the Structure and Enzyme Activity of α-Chymotrypsin. Journal of Physical Chemistry B, 2010, 114, 1471-1478.	1.2	112
4	Does the stability of proteins in ionic liquids obey the Hofmeister series?. International Journal of Biological Macromolecules, 2014, 63, 244-253.	3.6	104
5	Thermodynamic characterization of the biocompatible ionic liquid effects on protein model compounds and their functional groups. Physical Chemistry Chemical Physics, 2011, 13, 6566.	1.3	98
6	Measurements and Molecular Interactions for N,N-Dimethylformamide with Ionic Liquid Mixed Solvents. Journal of Physical Chemistry B, 2010, 114, 6126-6133.	1.2	92
7	A protic ionic liquid attenuates the deleterious actions of urea on α-chymotrypsin. Physical Chemistry Chemical Physics, 2011, 13, 17023.	1.3	85
8	Ionic Liquid Modifies the Lower Critical Solution Temperature (LCST) of Poly(<i>N</i> -isopropylacrylamide) in Aqueous Solution. Journal of Physical Chemistry B, 2011, 115, 4752-4757.	1.2	84
9	Unexpected effects of the alteration of structure and stability of myoglobin and hemoglobin in ammonium-based ionic liquids. Physical Chemistry Chemical Physics, 2014, 16, 5514.	1.3	84
10	Biocompatibility of ionic liquids towards protein stability: A comprehensive overview on the current understanding and their implications. International Journal of Biological Macromolecules, 2017, 96, 611-651.	3.6	83
11	Long-term protein packaging in cholinium-based ionic liquids: improved catalytic activity and enhanced stability of cytochrome c against multiple stresses. Green Chemistry, 2017, 19, 4900-4911.	4.6	83
12	Thermophysical properties of dimethylsulfoxide with ionic liquids at various temperatures. Fluid Phase Equilibria, 2011, 304, 35-43.	1.4	77
13	Influence of Alkyl Chain Length and Temperature on Thermophysical Properties of Ammonium-Based Ionic Liquids with Molecular Solvent. Journal of Physical Chemistry B, 2012, 116, 4561-4574.	1.2	68
14	Temperature Dependence Measurements and Structural Characterization of Trimethyl Ammonium lonic Liquids with a Highly Polar Solvent. Journal of Physical Chemistry B, 2011, 115, 10086-10097.	1.2	65
15	Exploring the thermal stability of α-chymotrypsin in protic ionic liquids. Process Biochemistry, 2013, 48, 462-470.	1.8	64
16	Prevention of insulin self-aggregation by a protic ionic liquid. RSC Advances, 2013, 3, 362-367.	1.7	64
17	Thermophysical Properties of Aqueous Solution of Ammonium-Based Ionic Liquids. Journal of Physical Chemistry B, 2014, 118, 5971-5982.	1.2	64
18	Protein immobilization on graphene oxide or reduced graphene oxide surface and their applications: Influence over activity, structural and thermal stability of protein. Advances in Colloid and Interface Science, 2021, 289, 102367.	7.0	64

#	Article	IF	CITATIONS
19	Temperature Effect on the Molecular Interactions between Ammonium Ionic Liquids and <i>N</i> , <i>N</i> , 13415-13425.	1.2	62
20	Thermophysical properties for the mixed solvents of N-methyl-2-pyrrolidone with some of the imidazolium-based ionic liquids. Journal of Molecular Liquids, 2014, 198, 11-20.	2.3	62
21	A comparative study of the effects of the Hofmeister series anions of the ionic salts and ionic liquids on the stability of î±-chymotrypsin. New Journal of Chemistry, 2015, 39, 938-952.	1.4	58
22	Effect of anion variation on the thermophysical properties of triethylammonium based protic ionic liquids with polar solvent. Thermochimica Acta, 2013, 556, 75-88.	1.2	56
23	Influence of cholinium-based ionic liquids on the structural stability and activity of α-chymotrypsin. New Journal of Chemistry, 2017, 41, 13902-13911.	1.4	55
24	Endeavour to simplify the frustrated concept of protein-ammonium family ionic liquid interactions. Physical Chemistry Chemical Physics, 2015, 17, 20466-20484.	1.3	54
25	Variation in the structural changes of myoglobin in the presence of several protic ionic liquid. International Journal of Biological Macromolecules, 2014, 69, 114-123.	3.6	52
26	Water and a protic ionic liquid acted as refolding additives for chemically denatured enzymes. Organic and Biomolecular Chemistry, 2012, 10, 7475.	1.5	51
27	The stability of insulin in the presence of short alkyl chain imidazolium-based ionic liquids. RSC Advances, 2014, 4, 4487-4499.	1.7	48
28	Effect of polyols on the native structure of \hat{l}_{\pm} -chymotrypsin: A comparable study. Thermochimica Acta, 2012, 536, 55-62.	1,2	47
29	Temperature effect on the molecular interactions between two ammonium ionic liquids and dimethylsulfoxide. Journal of Molecular Liquids, 2011, 164, 218-225.	2.3	44
30	Influence of additives on thermoresponsive polymers in aqueous media: a case study of poly(<i>N</i> -isopropylacrylamide). Physical Chemistry Chemical Physics, 2018, 20, 9717-9744.	1.3	44
31	Influence of anion on thermophysical properties of ionic liquids with polar solvent. Journal of Chemical Thermodynamics, 2013, 58, 269-278.	1.0	41
32	Effect of the Alkyl Chain Length of the Cation on the Interactions between Water and Ammonium-Based Ionic Liquids: Experimental and COSMO-RS Studies. Industrial & Engineering Chemistry Research, 2015, 54, 9013-9026.	1.8	41
33	Molecular interactions between ammonium-based ionic liquids and molecular solvents: current progress and challenges. Physical Chemistry Chemical Physics, 2016, 18, 8278-8326.	1.3	40
34	Unprecedented Improvement in the Stability of Hemoglobin in the Presence of Promising Green Solvent 1-Allyl-3-methylimidazolium Chloride. ACS Sustainable Chemistry and Engineering, 2016, 4, 413-421.	3.2	40
35	Expanding the Potential Role of Deep Eutectic Solvents toward Facilitating the Structural and Thermal Stability of α-Chymotrypsin. ACS Sustainable Chemistry and Engineering, 2020, 8, 10151-10160.	3.2	40
36	Trehalose protects urea-induced unfolding of α-chymotrypsin. International Journal of Biological Macromolecules, 2010, 47, 540-545.	3.6	39

#	Article	IF	Citations
37	Interactions of ionic liquids with hydration layer of poly(N-isopropylacrylamide): comprehensive analysis of biophysical techniques results. Physical Chemistry Chemical Physics, 2014, 16, 10708-10718.	1.3	39
38	Insights into the interactions between enzyme and co-solvents: Stability and activity of stem bromelain. International Journal of Biological Macromolecules, 2015, 73, 189-201.	3.6	39
39	Influence of protic ionic liquids on the structure and stability of succinylated Con A. International Journal of Biological Macromolecules, 2012, 51, 119-128.	3.6	38
40	Ammonium ionic liquids as convenient co-solvents for the structure and stability of succinylated Con A. Journal of Chemical Thermodynamics, 2012, 52, 78-88.	1.0	37
41	The biological stimuli for governing the phase transition temperature of the "smart―polymer PNIPAM in water. Colloids and Surfaces B: Biointerfaces, 2015, 135, 588-595.	2.5	37
42	Influence of Hydroxyl Group Position and Temperature on Thermophysical Properties of Tetraalkylammonium Hydroxide Ionic Liquids with Alcohols. PLoS ONE, 2014, 9, e86530.	1.1	36
43	Assessing the efficiency of imidazolium-based ionic liquids on the phase behavior of a synthetic biomedical thermoresponsive polymer. Journal of Colloid and Interface Science, 2018, 511, 174-183.	5.0	36
44	Destruction of hydrogen bonds of poly(N-isopropylacrylamide) aqueous solution by trimethylamineN-oxide. Journal of Chemical Physics, 2012, 136, 234904.	1.2	35
45	A green approach to offset the perturbation action of 1-butyl-3-methylimidazolium iodide on \hat{l}_{\pm} -chymotrypsin. Physical Chemistry Chemical Physics, 2015, 17, 184-190.	1.3	35
46	Solution Behavior of Triblock Copolymer in the Presence of Ionic Liquids: A Comparative Study of Two Ionic Liquids Possessing Different Cations with Same Anion. ACS Sustainable Chemistry and Engineering, 2016, 4, 2412-2421.	3.2	35
47	Innovative aspects of protein stability in ionic liquid mixtures. Biophysical Reviews, 2018, 10, 841-846.	1.5	35
48	Changing relations between proteins and osmolytes: a choice of nature. Physical Chemistry Chemical Physics, 2018, 20, 20315-20333.	1.3	35
49	Thermodynamic contributions of peptide backbone unit from water to biocompatible ionic liquids at T=298.15K. Journal of Chemical Thermodynamics, 2012, 45, 122-136.	1.0	34
50	Influence of ionic liquids on the critical micellization temperature of a tri-block co-polymer in aqueous media. Journal of Colloid and Interface Science, 2014, 420, 166-173.	5.0	34
51	The Overriding Roles of Concentration and Hydrophobic Effect on Structure and Stability of Heme Protein Induced by Imidazolium-Based Ionic Liquids. Journal of Physical Chemistry B, 2015, 119, 8357-8368.	1.2	33
52	An unexplored remarkable PNIPAM-osmolyte interaction study: An integrated experimental and simulation approach. Journal of Colloid and Interface Science, 2017, 504, 417-428.	5.0	33
53	Biocompatibility of surface-modified gold nanoparticles towards red blood cells and haemoglobin. Applied Surface Science, 2020, 512, 145573.	3.1	33
54	The Solubility and Stability of Amino Acids in Biocompatible Ionic Liquids. Protein and Peptide Letters, 2013, 21, 15-24.	0.4	32

#	Article	IF	Citations
55	Comprehensive Evaluation of Biomolecular Interactions between Protein and Amino Acid Basedâ€lonic Liquids: A Comparable Study between [Bmim][Br] and [Bmim][Gly] Ionic Liquids. ChemistrySelect, 2016, 1, 3510-3519.	0.7	32
56	Structural insights into the effect of cholinium-based ionic liquids on the critical micellization temperature of aqueous triblock copolymers. Physical Chemistry Chemical Physics, 2016, 18, 8342-8351.	1.3	32
57	Sustained Stability and Activity of Lysozyme in Choline Chloride against pH Induced Denaturation. ACS Sustainable Chemistry and Engineering, 2017, 5, 8344-8355.	3.2	31
58	Current understanding and insights towards protein stabilization and activation in deep eutectic solvents as sustainable solvent media. Physical Chemistry Chemical Physics, 2022, 24, 13474-13509.	1.3	31
59	Analysis of the driving force that rule the stability of lysozyme in alkylammonium-based ionic liquids. International Journal of Biological Macromolecules, 2015, 81, 1074-1081.	3.6	30
60	A comparative study of the stability of stem bromelain based on the variation of anions of imidazolium-based ionic liquids. Journal of Molecular Liquids, 2017, 246, 178-186.	2.3	29
61	Thermo-responsive triblock copolymer phase transition behaviour in imidazolium-based ionic liquids: Role of the effect of alkyl chain length of cations. Journal of Colloid and Interface Science, 2017, 485, 183-191.	5.0	29
62	Excess Molar Enthalpies and Vaporâ-'Liquid Equilibrium for <i>N</i> Methyl-2-pyrrolidone with Ketones. Journal of Chemical & Data, 2010, 55, 69-73.	1.0	28
63	Exploring the Effect of Choline-Based Ionic Liquids on the Stability and Activity of Stem Bromelain. Journal of Physical Chemistry B, 2018, 122, 10435-10444.	1.2	28
64	Refolding effects of partially immiscible ammonium-based ionic liquids on the urea-induced unfolded lysozyme structure. Physical Chemistry Chemical Physics, 2016, 18, 12419-12422.	1.3	27
65	Insight into impact of choline-based ionic liquids on bovine \hat{l}^2 -lactoglobulin structural analysis: Unexpected high thermal stability of protein. International Journal of Biological Macromolecules, 2019, 126, 1-10.	3.6	27
66	Implications of Imidazolium-Based Ionic Liquids as Refolding Additives for Urea-Induced Denatured Serum Albumins. ACS Sustainable Chemistry and Engineering, 2020, 8, 604-612.	3.2	27
67	Influence of biocompatible ammonium ionic liquids on the solubility of l-alanine and l-valine in water. Fluid Phase Equilibria, 2012, 335, 39-45.	1.4	26
68	Strategic planning of proteins in ionic liquids: future solvents for the enhanced stability of proteins against multiple stresses. Physical Chemistry Chemical Physics, 2019, 21, 23269-23282.	1.3	26
69	Effects of atmospheric-pressure non-thermal plasma jets on enzyme solutions. Journal of the Korean Physical Society, 2012, 60, 959-964.	0.3	25
70	Does choline-based amino acid ionic liquid behave as a biocompatible solvent for stem bromelain structure?. Process Biochemistry, 2018, 74, 77-85.	1.8	25
71	Quantitative evaluation of the ability of ionic liquids to offset the cold-induced unfolding of proteins. Physical Chemistry Chemical Physics, 2014, 16, 15806.	1.3	24
72	lonic Liquid-Modified Gold Nanoparticles for Enhancing Antimicrobial Activity and Thermal Stability of Enzymes. ACS Applied Nano Materials, 2021, 4, 3185-3196.	2.4	23

#	Article	IF	CITATIONS
73	Influence of biological stimuli on the phase behaviour of a biomedical thermoresponsive polymer: A comparative investigation of hemeproteins. Journal of Colloid and Interface Science, 2019, 541, 1-11.	5.0	22
74	TMAO and sorbitol attenuate the deleterious action of atmospheric pressure non-thermal jet plasma on \hat{l}_{\pm} -chymotrypsin. RSC Advances, 2012, 2, 7146.	1.7	21
75	A Distinct Proof on Interplay between Trehalose and Guanidinium Chloride for the Stability of Stem Bromelain. Journal of Physical Chemistry B, 2016, 120, 8863-8872.	1.2	21
76	A novel amalgamation of deep eutectic solvents and crowders as biocompatible solvent media for enhanced structural and thermal stability of bovine serum albumin. Physical Chemistry Chemical Physics, 2020, 22, 24410-24422.	1.3	21
77	Multifunctional solvothermal carbon derived from alginate using †water-in-deep eutectic solvents†for enhancing enzyme activity. Chemical Communications, 2020, 56, 9659-9662.	2.2	21
78	Functionalized carbon nanotubes modulate the phase transition behavior of thermoresponsive polymer via hydrophilic-hydrophobic balance. Polymer, 2019, 178, 121573.	1.8	20
79	Protein packaging in ionic liquid mixtures: an ecofriendly approach towards the improved stability of \hat{l}^2 -lactoglobulin in cholinium-based mixed ionic liquids. Physical Chemistry Chemical Physics, 2020, 22, 14811-14821.	1.3	20
80	How does cholinium cation surpass tetraethylammonium cation in amino acid-based ionic liquids for thermal and structural stability of serum albumins?. International Journal of Biological Macromolecules, 2020, 148, 615-626.	3.6	20
81	Biological Stimuli-Induced Phase Transition of a Synthesized Block Copolymer: Preferential Interactions between PNIPAM- <i>b</i> -PNVCL and Heme Proteins. Langmuir, 2021, 37, 1682-1696.	1.6	20
82	Does 1-Allyl-3-methylimidazolium chloride Act as a Biocompatible Solvent for Stem Bromelain?. Journal of Physical Chemistry B, 2016, 120, 5625-5633.	1.2	19
83	Direct conversion of lignocellulosic biomass to biomimetic tendril-like functional carbon helices: a protein friendly host for cytochrome C. Green Chemistry, 2018, 20, 3711-3716.	4.6	19
84	Vapor–liquid equilibrium for the binary mixtures of dimethylsulfoxide with substituted benzenes. Fluid Phase Equilibria, 2007, 262, 32-36.	1.4	18
85	Effect of Imidazolium-Based Ionic Liquids on the Structure and Stability of Stem Bromelain: Concentration and Alkyl Chain Length Effect. Journal of Physical Chemistry B, 2018, 122, 7522-7529.	1.2	18
86	Designing biological fluid inspired molecularly crowded ionic liquid media as a sustainable packaging platform for cytochrome <i>c</i> . Chemical Communications, 2019, 55, 5747-5750.	2.2	18
87	Excess enthalpies and (vapour+liquid) equilibrium data for the binary mixtures of dimethylsulphoxide with ketones. Journal of Chemical Thermodynamics, 2007, 39, 1661-1666.	1.0	17
88	Comprehensive Computational and Experimental Analysis of Biomaterial toward the Behavior of Imidazolium-Based Ionic Liquids: An Interplay between Hydrophilic and Hydrophobic Interactions. Journal of Physical Chemistry B, 2017, 121, 4909-4922.	1.2	17
89	Deciphering the Interactions of Bromelain with Carbon Nanotubes: Role of Protein as Well as Carboxylated Multiwalled Carbon Nanotubes in a Complexation Mechanism. Journal of Physical Chemistry C, 2016, 120, 15436-15445.	1.5	16
90	Probing Molecular Interactions between Ammonium-Based Ionic Liquids and $\langle i \rangle N \langle i \rangle, \langle i \rangle N \langle i \rangle$. Dimethylacetamide: A Combined FTIR, DLS, and DFT Study. Journal of Physical Chemistry B, 2016, 120, 12584-12595.	1.2	16

#	Article	IF	CITATIONS
91	Comprehensive Insight into the Protein–Surface Biomolecular Interactions on a Smart Material: Complex Formation between Poly(<i>N</i> -vinyl Caprolactam) and Heme Protein. Journal of Physical Chemistry B, 2019, 123, 6331-6344.	1.2	16
92	How Does a Smart Polymer Respond to Imidazolium-Based Ionic Liquids?. ACS Sustainable Chemistry and Engineering, 2018, 6, 1400-1410.	3.2	15
93	In-depth understanding of a nano-bio interface between lysozyme and Au NP-immobilized N-doped reduced graphene oxide 2-D scaffolds. Nanoscale Advances, 2020, 2, 2146-2159.	2.2	15
94	Contemporary Advancement of Cholinium-Based Ionic Liquids for Protein Stability and Long-Term Storage: Past, Present, and Future Outlook. ACS Sustainable Chemistry and Engineering, 2022, 10, 4323-4344.	3.2	15
95	Refolding of urea-induced denaturation of model proteins by trimethylamine N-oxide. Thermochimica Acta, 2011, 526, 143-150.	1.2	14
96	Interruption of hydration state of thermoresponsive polymer, poly(N-isopropylacrylamide) in guanidinium hydrochloride. Polymer, 2013, 54, 791-797.	1.8	14
97	New endeavours involving the cooperative behaviour of TMAO and urea towards the globular state of poly(N-isopropylacrylamide). RSC Advances, 2017, 7, 34023-34033.	1.7	14
98	Does macromolecular crowding compatible with enzyme stem bromelain structure and stability?. International Journal of Biological Macromolecules, 2019, 131, 527-535.	3.6	14
99	Tweaking Behavior of Hydrogen Bond Donor in Choline Chloride-Based Deep Eutectic Solvents for Regulating the Phase Transition of Poly(<i>N</i> -vinylcaprolactam): A Sustainable Medium for an Early Hydrophobic Collapse. ACS Sustainable Chemistry and Engineering, 2021, 9, 14335-14344.	3.2	14
100	Exploring the structure and stability of amino acids and glycine peptides in biocompatible ionic liquids. RSC Advances, 2016, 6, 18763-18777.	1.7	13
101	The effects of biological buffers TRIS, TAPS, TES on the stability of lysozyme. International Journal of Biological Macromolecules, 2018, 112, 720-727.	3.6	13
102	Experimental and molecular docking studies in understanding the biomolecular interactions between stem bromelain and imidazolium-based ionic liquids. Journal of Molecular Liquids, 2020, 297, 111785.	2.3	13
103	Cholinium-Based Ionic Liquids as Efficient Media for Improving the Structural and Thermal Stability of Immunoglobulin G Antibodies. ACS Sustainable Chemistry and Engineering, 2022, 10, 5404-5420.	3.2	13
104	Polyacrylic acid polymer modulates the UCST-type phase behavior of ionic liquid and water. RSC Advances, 2012, 2, 6939.	1.7	12
105	Coherent Experimental and Simulation Approach To Explore the Underlying Mechanism of Denaturation of Stem Bromelain in Osmolytes. Journal of Physical Chemistry B, 2017, 121, 6456-6470.	1.2	12
106	A molecular interplay for osmolytes-induced phase behaviour of poly (vinyl methyl ether). Polymer, 2017, 131, 224-233.	1.8	11
107	Crowded milieu tuning the stability and activity of stem bromelain. International Journal of Biological Macromolecules, 2018, 109, 114-123.	3.6	11
108	Unravelling the interactions between biomedical thermoresponsive polymer and biocompatible ionic liquids. Journal of Molecular Liquids, 2020, 300, 112362.	2.3	10

#	Article	IF	CITATIONS
109	Insulin-induced conformational transition of fluorescent copolymers: a perspective of self-assembly between protein and micellar solutions of smart copolymers. Physical Chemistry Chemical Physics, 2020, 22, 9573-9586.	1.3	10
110	How does the addition of shape distinct gold nanoparticles influence on the conformational transition of poly(N-isopropylacrylamide)?. Journal of Colloid and Interface Science, 2021, 582, 478-487.	5.0	10
111	Thermodynamic Contribution of Amino Acids in Ionic Liquids Towards Protein Stability. Current Biochemical Engineering, 2014, 1, 125-140.	1.3	9
112	The influence of various alkylammonium-based ionic liquids on the hydration state of temperature-responsive polymer. Journal of Molecular Liquids, 2017, 225, 186-194.	2.3	9
113	Unravelling the role of polyols with increasing carbon chain length and OH groups on the phase transition behavior of PNIPAM. New Journal of Chemistry, 2018, 42, 13708-13717.	1.4	9
114	Scrutinizing the effect of various nitrogen containing additives on the micellization behavior of a triblock copolymer. Journal of Colloid and Interface Science, 2019, 553, 655-665.	5.0	9
115	Sustainable Solvothermal Conversion of Waste Biomass to Functional Carbon Material: Extending Its Utility as a Biocompatible Cosolvent for Lysozyme. ACS Biomaterials Science and Engineering, 2020, 6, 4881-4892.	2.6	9
116	A Comprehensive Experimental Study to Understand the Hofmeister Series of Anions of Aqueous Imidazolium-Based Ionic Liquids on Glycine Peptides. Industrial & Engineering Chemistry Research, 2014, 53, 19628-19642.	1.8	8
117	Efficacy of several additives to modulate the phase behavior of biomedical polymers: A comprehensive and comparative outlook. Advances in Colloid and Interface Science, 2019, 274, 102042.	7.0	8
118	Structural features and oligomeric nature of human podocin domain. Biochemistry and Biophysics Reports, 2020, 23, 100774.	0.7	8
119	Effect of structural variations in cations of ionic liquids on the coexistence curve of isobutyric acid and water. New Journal of Chemistry, 2012, 36, 2266.	1.4	7
120	Influence of temperature on thermophysical properties of tri(butyl)methylphosphonium methyl sulfate + N -methyl-2-pyrrolidone. Journal of Molecular Liquids, 2017, 242, 375-381.	2.3	7
121	Profiling the molecular interactions between a promising thermoresponsive polymer and ionic liquid: A biophysical outlook. Journal of Molecular Liquids, 2019, 278, 716-721.	2.3	7
122	Does poly(ionic liquid) modulate the non-covalent interactions of chicken egg white lysozyme? Elucidation of biomolecular interactions between biomolecules and macromolecular solvents. New Journal of Chemistry, 2019, 43, 16759-16766.	1.4	7
123	An efficient study to reach physiological temperature with poly(N-isopropylacrylamide) in presence of two differently behaving additives. Journal of Colloid and Interface Science, 2019, 538, 62-74.	5. 0	7
124	Assessing the Compatibility of Mono-, Di-, and Tri-Cholinium Citrate Ionic Liquids for the Stability and Activity of α-Chymotrypsin. ACS Sustainable Chemistry and Engineering, 2021, 9, 4812-4822.	3.2	7
125	Exploring the Counteracting and Refolding Ability of Choline-Based Ionic Liquids toward Crowding Environment-Induced Changes in HSA Structure. ACS Sustainable Chemistry and Engineering, 2021, 9, 422-437.	3.2	7
126	Excellency of pyrimidinyl moieties containing $\hat{l}\pm$ -aminophosphonates over benzthiazolyl moieties for thermal and structural stability of stem bromelain. International Journal of Biological Macromolecules, 2020, 165, 2010-2021.	3.6	6

#	Article	IF	CITATIONS
127	Monitoring phase transition behavior of Poly(N-vinylcaprolactam) via nanostructure-based functionalized carbon nanotubes. Journal of Molecular Liquids, 2020, 318, 114062.	2.3	6
128	Evaluation of Utilizing Functionalized Graphene Oxide Nanoribbons as Compatible Biomaterial for Lysozyme. ACS Applied Bio Materials, 2021, 4, 6112-6124.	2.3	6
129	Evaluating the transfer free energies of amino acids from water to ammonium-based ionic liquids at 298.15K. Journal of Molecular Liquids, 2015, 208, 130-136.	2.3	5
130	A biophysical strategy to examine the impact of newly synthesized polymerizable ammonium-based ionic liquids on the structural stability and proteolytic activity of stem bromelain. International Journal of Biological Macromolecules, 2020, 151, 957-966.	3.6	5
131	Effect of temperature on molecular interactions between tri(butyl)methylphosphonium methylsulfate and furfural. Journal of Chemical Thermodynamics, 2020, 149, 106150.	1.0	5
132	The role of osmolytes in the temperature-triggered conformational transition of $poly(N>)inylcaprolactam): an experimental and computational study. Physical Chemistry Chemical Physics, 2020, 22, 5301-5313.$	1.3	5
133	Role of protein-copolymer assembly in controlling micellization process of amphiphilic triblock copolymer. Journal of Colloid and Interface Science, 2021, 608, 2142-2157.	5.0	5
134	Quantifying the influence of ionic liquid on the phase behaviour of a biomedical thermoresponsive polymer: A biophysical experimental approach. Reactive and Functional Polymers, 2019, 143, 104327.	2.0	4
135	Biomass-derived carbon helices induced phase transition in poly(N-ispropylacrylamide): A sustainable tailoring of coil-globule transition in thermoresponsive polymer. Colloids and Surfaces B: Biointerfaces, 2020, 187, 110637.	2.5	4
136	The biocompatible validity of amino acid ionic liquid mediated gold nanoparticles for enhanced activity and structural stability of papain. Dalton Transactions, 2021, 50, 10455-10470.	1.6	4
137	Interactions between a biomedical thermoresponsive polymer and imidazolium-based ionic liquids: A comprehensive biophysical investigation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641, 128619.	2.3	4
138	Tunnelling the structural insights between poly(N-isopropylacrylamide) and imidazolium sulfate ionic liquids. Journal of Molecular Liquids, 2022, 360, 119404.	2.3	4
139	Cholinium-Based Ionic Liquids Attenuate the Amyloid Fibril Formation of Lysozyme: A Greener Concept of Antiamyloidogenic Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2022, 10, 9242-9253.	3.2	4
140	Quantifying the co-solvent effects on trypsin from the digestive system of carp Catla catla by biophysical techniques and molecular dynamics simulations. RSC Advances, 2015, 5, 43023-43035.	1.7	3
141	A study of the conformational changes of \hat{l}^2 -lactoglobulin in the vicinity of critical point of binary mixed solvents. New Journal of Chemistry, 2016, 40, 1747-1755.	1.4	3
142	Undesirable impact on structure and stability of insulin on addition of (+)-catechin hydrate with sugar. Archives of Biochemistry and Biophysics, 2018, 646, 64-71.	1.4	3
143	Insight into interactions between enzyme and biological buffers: Enhanced thermal stability of stem bromelain. Journal of Molecular Liquids, 2021, 322, 114526.	2.3	3
144	Understanding the close encounter of heme proteins with carboxylated multiwalled carbon nanotubes: a case study of contradictory stability trend for hemoglobin and myoglobin. Physical Chemistry Chemical Physics, 2021, 23, 19740-19751.	1.3	3

#	Article	IF	CITATIONS
145	Gold nanospheres/nanorods as highly promising candidates for the hydrophilic/hydrophobic balance of poly(<i>N</i> -vinylcaprolactam): a thoughtful design of nanocomposites. New Journal of Chemistry, 2022, 46, 12381-12393.	1.4	3
146	A study of the molecular interactions between ammonium-based ionic liquids and N , N -dimethylacetamide. Journal of Molecular Liquids, 2016, 223, 687-698.	2.3	2
147	How does bovine serum albumin sustain in saccharomate \hat{A}^{\otimes} derived from pine tree biomass?. Colloids and Surfaces B: Biointerfaces, 2020, 191, 110975.	2.5	1
148	Can stem bromelain, a pineapple waste product, be used as a drug alternative? A mechanistic insight into protein–protein interactions. New Journal of Chemistry, 2020, 44, 19450-19458.	1.4	O