
Marc E J Stettler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3385291/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Real world CO2 and NOx emissions from 149 Euro 5 and 6 diesel, gasoline and hybrid passenger cars. Science of the Total Environment, 2018, 621, 282-290.	3.9	154
2	A Portable Emissions Measurement System (PEMS) study of NOx and primary NO2 emissions from Euro 6 diesel passenger cars and comparison with COPERT emission factors. Atmospheric Environment, 2016, 145, 81-91.	1.9	128
3	Use of networks of low cost air quality sensors to quantify air quality in urban settings. Atmospheric Environment, 2018, 194, 58-70.	1.9	121
4	Air quality and public health impacts of UK airports. Part II: Impacts and policy assessment. Atmospheric Environment, 2013, 67, 184-192.	1.9	98
5	Rapid estimation of global civil aviation emissions with uncertainty quantification. Transportation Research, Part D: Transport and Environment, 2013, 25, 33-41.	3.2	98
6	Engine maps of fuel use and emissions from transient driving cycles. Applied Energy, 2016, 183, 202-217.	5.1	81
7	Mitigating the Climate Forcing of Aircraft Contrails by Small-Scale Diversions and Technology Adoption. Environmental Science & Technology, 2020, 54, 2941-2950.	4.6	70
8	An Automated Machine-Learning Approach for Road Pothole Detection Using Smartphone Sensor Data. Sensors, 2020, 20, 5564.	2.1	60
9	The ventilation of buildings and other mitigating measures for COVID-19: a focus on wintertime. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2021, 477, 20200855.	1.0	47
10	Modelling of instantaneous emissions from diesel vehicles with a special focus on NOx: Insights from machine learning techniques. Science of the Total Environment, 2020, 737, 139625.	3.9	45
11	Global Civil Aviation Black Carbon Emissions. Environmental Science & Technology, 2013, 47, 130823150610008.	4.6	43
12	Greenhouse Gas and Noxious Emissions from Dual Fuel Diesel and Natural Gas Heavy Goods Vehicles. Environmental Science & Technology, 2016, 50, 2018-2026.	4.6	38
13	Airport emissions reductions from reduced thrust takeoff operations. Transportation Research, Part D: Transport and Environment, 2017, 52, 15-28.	3.2	37
14	Environmental and economic analysis of liquefied natural gas (LNG) for heavy goods vehicles in the UK: A Well-to-Wheel and total cost of ownership evaluation. Energy Policy, 2020, 137, 111161.	4.2	37
15	Particle Emission Characteristics of a Gas Turbine with a Double Annular Combustor. Aerosol Science and Technology, 2015, 49, 842-855.	1.5	35
16	Urban network-wide traffic speed estimation with massive ride-sourcing GPS traces. Transportation Research Part C: Emerging Technologies, 2020, 112, 136-152.	3.9	34
17	Supporting an integrated transportation infrastructure and public space design: A coupled simulation method for evaluating traffic pollution and microclimate. Sustainable Cities and Society, 2020, 52, 101796.	5.1	31
18	Air traffic and contrail changes over Europe during COVID-19: a model study. Atmospheric Chemistry and Physics, 2021, 21, 7429-7450.	1.9	28

MARC E J STETTLER

#	Article	IF	CITATIONS
19	Updated Correlation Between Aircraft Smoke Number and Black Carbon Concentration. Aerosol Science and Technology, 2013, 47, 1205-1214.	1.5	26
20	Methodology for quantifying the volatile mixing state of an aerosol. Aerosol Science and Technology, 2016, 50, 759-772.	1.5	26
21	Effective density and volatility of particles sampled from a helicopter gas turbine engine. Aerosol Science and Technology, 2017, 51, 704-714.	1.5	26
22	A large eddy simulation of the dispersion of traffic emissions by moving vehicles at an intersection. Atmospheric Environment, 2019, 215, 116891.	1.9	26
23	Natural gas fuel and greenhouse gas emissions in trucks and ships. Progress in Energy, 2020, 2, 012002.	4.6	21
24	A research agenda on systems approaches to infrastructure. Civil Engineering and Environmental Systems, 2020, 37, 214-233.	0.4	20
25	Transitions between technological generations of alternative fuel vehicles in Brazil. Energy Policy, 2019, 134, 110915.	4.2	19
26	Deep-MAPS: Machine-Learning-Based Mobile Air Pollution Sensing. IEEE Internet of Things Journal, 2021, 8, 7649-7660.	5.5	19
27	A methodology to relate black carbon particle number and mass emissions. Journal of Aerosol Science, 2019, 132, 44-59.	1.8	18
28	Evaluation of port disruption impacts in the global liner shipping network. Journal of Shipping and Trade, 2019, 4, .	0.7	17
29	Beyond Contrail Avoidance: Efficacy of Flight Altitude Changes to Minimise Contrail Climate Forcing. Aerospace, 2020, 7, 121.	1.1	17
30	Urban Traffic Route Guidance Method With High Adaptive Learning Ability Under Diverse Traffic Scenarios. IEEE Transactions on Intelligent Transportation Systems, 2021, 22, 2956-2968.	4.7	17
31	Characterization and Evaluation of Methane Oxidation Catalysts for Dual-Fuel Diesel and Natural Gas Engines. Emission Control Science and Technology, 2016, 2, 204-214.	0.8	14
32	The impact of single engine taxiing on aircraft fuel consumption and pollutant emissions. Aeronautical Journal, 2018, 122, 1967-1984.	1.1	13
33	Assignment and Pricing of Shared Rides in Ride-Sourcing Using Combinatorial Double Auctions. IEEE Transactions on Intelligent Transportation Systems, 2021, 22, 5648-5659.	4.7	12
34	Has the ultra low emission zone in London improved air quality?. Environmental Research Letters, 2021, 16, 124001.	2.2	11
35	Vehicle telematics data for urban freight environmental impact analysis. Transportation Research, Part D: Transport and Environment, 2022, 102, 103121.	3.2	11
36	Air quality impacts of new public transport provision: A causal analysis of the Jubilee Line Extension in London. Atmospheric Environment, 2021, 245, 118025.	1.9	10

MARC E J STETTLER

#	Article	IF	CITATIONS
37	Economic, Climate Change, and Air Quality Analysis of Distributed Energy Resource Systems. Procedia Computer Science, 2015, 51, 2147-2156.	1.2	9
38	Evaluation of an operational air quality model using large-eddy simulation. Atmospheric Environment: X, 2019, 3, 100041.	0.8	9
39	A novel multi-pollutant space-time learning network for air pollution inference. Science of the Total Environment, 2022, 811, 152254.	3.9	9
40	Source terms for benchmarking models of SARS-CoV-2 transmission via aerosols and droplets. Royal Society Open Science, 2022, 9, 212022.	1.1	8
41	The impact of aircraft takeoff thrust setting on NO X emissions. Journal of Air Transport Management, 2017, 65, 191-197.	2.4	7
42	On the Selection of Charging Facility Locations for EV-Based Ride-Hailing Services: A Computational Case Study. Sustainability, 2021, 13, 168.	1.6	6
43	Dynamic Pricing in One-Sided Autonomous Ride-Sourcing Markets. , 2018, , .		5
44	Intelligent Management of On-street Parking Provision for the Autonomous Vehicles Era. , 2020, , .		5
45	Open-source modelling of aerosol dynamics and computational fluid dynamics: Nodal method for nucleation, coagulation, and surface growth. Computer Physics Communications, 2021, 261, 107765.	3.0	4
46	Multiscale numerical modeling of solid particle penetration and hydrocarbons removal in a catalytic stripper. Aerosol Science and Technology, 2021, 55, 987-1000.	1.5	4
47	Influence of Land Use and Meteorological Factors on PM2.5 and PM10 Concentrations in Bangkok, Thailand. Sustainability, 2022, 14, 5367.	1.6	4
48	Feasibility Study on the Use of Artificial Neural Networks to Model Catalytic Oxidation in a Metallic Foam Reactor. Industrial & Engineering Chemistry Research, 2021, 60, 15416-15427.	1.8	3
49	Long-Term In-Use NO _{<i>x</i>} Emissions from London Buses with Retrofitted NO _{<i>x</i>} Aftertreatment. Environmental Science & Technology, 2022, 56, 6968-6977.	4.6	3
50	Design Principles for a Contrail-Minimizing Trial in the North Atlantic. Aerospace, 2022, 9, 375.	1.1	3
51	Vehicle Redistribution in Ride-Sourcing Markets Using Convex Minimum Cost Flows. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 10287-10298.	4.7	2
52	Using Computer Vision with Instantaneous Vehicle Emissions Modelling. , 2020, , .		1
53	Spatial-Temporal Flows-Adaptive Street Layout Control Using Reinforcement Learning. Sustainability, 2022, 14, 107.	1.6	1
54	Scenario analysis of CO2 emission peak in road transport of Chinese provinces: A case study of Guangdong. , 2019, , .		0

#	Article	IF	CITATIONS
55	Reply to a discussion of â€~a research agenda on systems approaches to infrastructure' by david elms. Civil Engineering and Environmental Systems, 2021, 38, 295-297.	0.4	Ο
56	Open-source modelling of aerosol dynamics and computational fluid dynamics: bipolar and unipolar diffusion charging and photoelectric charging. Computer Physics Communications, 2022, , 108399.	3.0	0