
Xianfu Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3385208/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ni3S2@Ni5P4 nanosheets as highly productive catalyst for electrocatalytic oxygen evolution. Chemical Engineering Science, 2022, 247, 117020.	1.9	12
2	Lowâ€Energy Oxygen Plasma Injection of 2D Bi ₂ Se ₃ Realizes Highly Controllable Resistive Random Access Memory. Advanced Functional Materials, 2022, 32, 2108455.	7.8	27
3	Eliminating anion depletion region and promoting Li+ solvation via anionphilic metal organic framework for dendrite-free lithium deposition. Nano Energy, 2022, 92, 106708.	8.2	14
4	Electronic and Photoelectronic Memristors Based on 2D Materials. Advanced Electronic Materials, 2022, 8, 2101099.	2.6	28
5	In Situ/Operando Raman Techniques in Lithium–Sulfur Batteries. Small Structures, 2022, 3, .	6.9	44
6	On-chip high-energy interdigital micro-supercapacitors with 3D nanotubular array electrodes. Journal of Materials Chemistry A, 2022, 10, 14051-14059.	5.2	13
7	Facile and Rapid Synthesis of Porous Hydrated V2O5 Nanoflakes for High-Performance Zinc Ion Battery Applications. Nanomaterials, 2022, 12, 2400.	1.9	4
8	Ferroelectric polarization accelerates lithium-ion diffusion for dendrite-free and highly-practical lithium-metal batteries. Nano Energy, 2021, 79, 105481.	8.2	32
9	2D Polarized Materials: Ferromagnetic, Ferrovalley, Ferroelectric Materials, and Related Heterostructures. Advanced Materials, 2021, 33, e2004469.	11.1	45
10	In-situ phase transition induced nanoheterostructure for overall water splitting. Chemical Engineering Journal, 2021, 409, 128156.	6.6	19
11	In-situ tracking of phase conversion reaction induced metal/metal oxides for efficient oxygen evolution. Science China Materials, 2021, 64, 362-373.	3.5	19
12	An artificial hybrid interphase for an ultrahigh-rate and practical lithium metal anode. Energy and Environmental Science, 2021, 14, 4115-4124.	15.6	376
13	Strong intermolecular polarization to boost polysulfide conversion kinetics for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2021, 9, 9771-9779.	5.2	21
14	Low Field Gradient and Highly Enhanced Plasmonic Nanocavity Array for Supersensitive Determination of Multiple Hazardous Chemical Residues. Journal of Physical Chemistry C, 2021, 125, 4710-4719.	1.5	6
15	Recent Advances in 2D Superconductors. Advanced Materials, 2021, 33, e2006124.	11.1	68
16	3D Printed Li–S Batteries with In Situ Decorated Li ₂ S/C Cathode: Interface Engineering Induced Loadingâ€Insensitivity for Scaled Areal Performance. Advanced Energy Materials, 2021, 11, 2100420.	10.2	37
17	Synergistic performance of nitrogen and sulfur co-doped Ti3C2TX for electrohydrogenation of N2 to NH3. Journal of Alloys and Compounds, 2021, 869, 159335.	2.8	16
18	Ionâ€Inserted Metal–Organic Frameworks Accelerate the Mass Transfer Kinetics in Lithium–Sulfur Batteries, Small, 2021, 17, e2104367.	5.2	13

#	Article	IF	CITATIONS
19	Coupling enhancement mechanisms, materials, and strategies for surface-enhanced Raman scattering devices. Analyst, The, 2021, 146, 5008-5032.	1.7	15
20	Genetic engineering of porous sulfur species with molecular target prevents host passivation in lithium sulfur batteries. Energy Storage Materials, 2020, 26, 65-72.	9.5	31
21	Adsorption atalysis Design in the Lithium‣ulfur Battery. Advanced Energy Materials, 2020, 10, 1903008.	10.2	275
22	Boronâ€Modified Electron Transfer in Metallic 1T MoSe ₂ for Enhanced Inherent Activity on Per atalytic Site toward Hydrogen Evolution. Advanced Materials Interfaces, 2020, 7, 1901560.	1.9	22
23	Atomic Structure Modification for Electrochemical Nitrogen Reduction to Ammonia. Advanced Energy Materials, 2020, 10, 1903172.	10.2	110
24	Graphene quantum dots as the nucleation sites and interfacial regulator to suppress lithium dendrites for high-loading lithium-sulfur battery. Nano Energy, 2020, 68, 104373.	8.2	95
25	Optimizing Redox Reactions in Aprotic Lithium–Sulfur Batteries. Advanced Energy Materials, 2020, 10, 2002180.	10.2	112
26	Record‣ow Subthresholdâ€&wing Negativeâ€Capacitance 2D Fieldâ€Effect Transistors. Advanced Materials, 2020, 32, e2005353.	11.1	31
27	Enhanced water oxidation activity of 3D porous carbon by incorporation of heterogeneous Ni/NiO nanoparticles. Applied Surface Science, 2020, 530, 147192.	3.1	24
28	Ultrabroadband Photodetectors up to 10.6 µm Based on 2D Fe ₃ O ₄ Nanosheets. Advanced Materials, 2020, 32, e2002237.	11.1	57
29	Strategies toward Highâ€Loading Lithium–Sulfur Battery. Advanced Energy Materials, 2020, 10, 2000082.	10.2	272
30	Bimetal Schottky Heterojunction Boosting Energyâ€Saving Hydrogen Production from Alkaline Water via Urea Electrocatalysis. Advanced Functional Materials, 2020, 30, 2000556.	7.8	216
31	Heterostructured NiS ₂ /Znln ₂ S ₄ Realizing Toroid-like Li ₂ O ₂ Deposition in Lithium–Oxygen Batteries with Low-Donor-Number Solvents. ACS Nano, 2020, 14, 3490-3499.	7.3	113
32	Largeâ€Scale Ultrathin 2D Wideâ€Bandgap BiOBr Nanoflakes for Gateâ€Controlled Deepâ€Ultraviolet Phototransistors. Advanced Materials, 2020, 32, e1908242.	11.1	100
33	In Situ Formed Gradient Bandgapâ€Tunable Perovskite for Ultrahighâ€Speed Color/Spectrumâ€Sensitive Photodetectors via Electronâ€Đonor Control. Advanced Materials, 2020, 32, e1908108.	11.1	55
34	Interfacial Capillaryâ€Forceâ€Driven Selfâ€Assembly of Monolayer Colloidal Crystals for Supersensitive Plasmonic Sensors. Small, 2020, 16, e1905480.	5.2	17
35	Atom removal on the basal plane of layered MoS2 leading to extraordinarily enhanced electrocatalytic performance. Electrochimica Acta, 2020, 336, 135740.	2.6	16
36	In situ evolved NiMo/NiMoO ₄ nanorods as a bifunctional catalyst for overall water splitting. Nanotechnology, 2020, 31, 495404.	1.3	14

#	Article	IF	CITATIONS
37	Identification of Key Reversible Intermediates in Selfâ€Reconstructed Nickelâ€Based Hybrid Electrocatalysts for Oxygen Evolution. Angewandte Chemie - International Edition, 2019, 58, 17458-17464.	7.2	255
38	Identification of Key Reversible Intermediates in Selfâ€Reconstructed Nickelâ€Based Hybrid Electrocatalysts for Oxygen Evolution. Angewandte Chemie, 2019, 131, 17619-17625.	1.6	45
39	Aluminumâ€Tailored Energy Level and Morphology of Co _{3â``} <i>_x</i> Al <i>_x</i> O ₄ Porous Nanosheets toward Highly Efficient Electrocatalysts for Water Oxidation. Small, 2019, 15, e1804886.	5.2	30
40	Lithiophilic montmorillonite serves as lithium ion reservoir to facilitate uniform lithium deposition. Nature Communications, 2019, 10, 4973.	5.8	144
41	Recent Progress on Molybdenum Oxides for Rechargeable Batteries. ChemSusChem, 2019, 12, 755-771.	3.6	37
42	SnS2 quantum dots growth on MoS2: Atomic-level heterostructure for electrocatalytic hydrogen evolution. Electrochimica Acta, 2019, 300, 45-52.	2.6	42
43	Blending Fe 3 O 4 into a Ni/NiO composite for efficient and stable bifunctional electrocatalyst. Electrochimica Acta, 2018, 264, 225-232.	2.6	42
44	High Edge Selectivity of In Situ Electrochemical Pt Deposition on Edgeâ€Rich Layered WS ₂ Nanosheets. Advanced Materials, 2018, 30, 1704779.	11.1	84
45	Singleâ€Nanostructured Electrochemical Detection for Intrinsic Mechanism of Energy Storage: Progress and Prospect. Small, 2018, 14, e1803482.	5.2	4
46	Redox Chemistry of Molybdenum Trioxide for Ultrafast Hydrogenâ€lon Storage. Angewandte Chemie, 2018, 130, 11743-11747.	1.6	20
47	Highly Stretchable Waterproof Fiber Asymmetric Supercapacitors in an Integrated Structure. ACS Applied Materials & Interfaces, 2018, 10, 19820-19827.	4.0	31
48	Redox Chemistry of Molybdenum Trioxide for Ultrafast Hydrogenâ€lon Storage. Angewandte Chemie - International Edition, 2018, 57, 11569-11573.	7.2	116
49	Nitrogen-Doped Carbon Coated WS2 Nanosheets as Anode for High-Performance Sodium-Ion Batteries. Frontiers in Chemistry, 2018, 6, 236.	1.8	22
50	Flexible high-energy asymmetric supercapacitors based on MnO@C composite nanosheet electrodes. Journal of Materials Chemistry A, 2017, 5, 804-813.	5.2	49
51	Ni/Fe Ratio Dependence of Catalytic Activity in Monodisperse Ternary Nickel Iron Phosphide for Efficient Water Oxidation. ChemElectroChem, 2017, 4, 2150-2157.	1.7	44
52	TiO ₂ Feather Duster as Effective Polysulfides Restrictor for Enhanced Electrochemical Kinetics in Lithium–Sulfur Batteries. Small, 2017, 13, 1701013.	5.2	147
53	Electronic Modulation of Electrocatalytically Active Center of Cu ₇ S ₄ Nanodisks by Cobalt-Doping for Highly Efficient Oxygen Evolution Reaction. ACS Nano, 2017, 11, 12230-12239.	7.3	139
54	Self-Roll-Up Technology for Micro-Energy Storage Devices. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2017, 33, 18-27.	2.2	2

#	Article	IF	CITATIONS
55	Engineered nanomembranes for smart energy storage devices. Chemical Society Reviews, 2016, 45, 1308-1330.	18.7	167
56	Optimised synthesis of close packed ZnO cloth and its applications in Li-ion batteries and dye-sensitized solar cells. Frontiers of Optoelectronics, 2015, 8, 220-228.	1.9	1
57	Flexible fiber energy storage and integrated devices: recent progress and perspectives. Materials Today, 2015, 18, 265-272.	8.3	146
58	Intercalation pseudo-capacitive TiNb2O7@carbon electrode for high-performance lithium ion hybrid electrochemical supercapacitors with ultrahigh energy density. Nano Energy, 2015, 15, 104-115.	8.2	263
59	Tin Microspheres Grown on Carbon Cloth as Binderâ€Free Integrated Anode for High Capacity Lithium Storage. Energy Technology, 2014, 2, 370-375.	1.8	10
60	Sprayâ€Painted Binderâ€Free SnSe Electrodes for Highâ€Performance Energyâ€&torage Devices. ChemSusChem, 2014, 7, 308-313.	3.6	81
61	Fiberâ€Based Flexible Allâ€Solidâ€State Asymmetric Supercapacitors for Integrated Photodetecting System. Angewandte Chemie - International Edition, 2014, 53, 1849-1853.	7.2	387
62	Core–Shell CuCo ₂ O ₄ @MnO ₂ Nanowires on Carbon Fabrics as Highâ€Performance Materials for Flexible, Allâ€6olidâ€6tate, Electrochemical Capacitors. ChemElectroChem, 2014, 1, 559-564.	1.7	149
63	Threeâ€Ðimensional Structural Engineering for Energyâ€Storage Devices: From Microscope to Macroscope. ChemElectroChem, 2014, 1, 975-1002.	1.7	53
64	Memristorâ€Integrated Voltageâ€Stabilizing Supercapacitor System. Advanced Materials, 2014, 26, 4999-5004.	11.1	26
65	Constructing optimized wire electrodes for fiber supercapacitors. Nano Energy, 2014, 10, 99-107.	8.2	59
66	Flexible TiO2/cellulose acetate hybrid film as a recyclable photocatalyst. RSC Advances, 2014, 4, 12640.	1.7	51
67	SnO ₂ @TiO ₂ Heterojunction Nanostructures for Lithiumâ€Ion Batteries and Selfâ€Powered UV Photodetectors with Improved Performances. ChemElectroChem, 2014, 1, 108-115.	1.7	104
68	Ultralong-life and high-rate web-like Li4Ti5O12 anode for high-performance flexible lithium-ion batteries. Nano Research, 2014, 7, 1073-1082.	5.8	100
69	Flexible Energy torage Devices: Design Consideration and Recent Progress. Advanced Materials, 2014, 26, 4763-4782.	11.1	1,153
70	Hierarchical MnCo ₂ O ₄ nanosheet arrays/carbon cloths as integrated anodes for lithium-ion batteries with improved performance. Nanoscale, 2014, 6, 8858-8864.	2.8	121
71	Flexible coaxial-type fiber supercapacitor based on NiCo2O4 nanosheets electrodes. Nano Energy, 2014, 8, 44-51.	8.2	248
72	Rechargeable Mg-Ion Batteries Based on WSe ₂ Nanowire Cathodes. ACS Nano, 2013, 7, 8051-8058.	7.3	244

#	Article	IF	CITATIONS
73	Advanced rechargeable lithium-ion batteries based on bendable ZnCo2O4-urchins-on-carbon-fibers electrodes. Nano Research, 2013, 6, 525-534.	5.8	109
74	SnO2-microtube-assembled cloth for fully flexible self-powered photodetector nanosystems. Nanoscale, 2013, 5, 7831.	2.8	91
75	Highly Reversible Lithium Storage in Hierarchical Ca ₂ Ge ₇ O ₁₆ Nanowire Arrays/Carbon Textile Anodes. Chemistry - A European Journal, 2013, 19, 8650-8656.	1.7	50
76	Single-crystalline metal germanate nanowire–carbon textiles as binder-free, self-supported anodes for high-performance lithium storage. Nanoscale, 2013, 5, 10291.	2.8	53
77	New Energy Storage Option: Toward ZnCo ₂ O ₄ Nanorods/Nickel Foam Architectures for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2013, 5, 10011-10017.	4.0	362
78	TiO2 modified FeS Nanostructures with Enhanced Electrochemical Performance for Lithium-Ion Batteries. Scientific Reports, 2013, 3, 2007.	1.6	133
79	Flexible, Planarâ€Integrated, Allâ€Solidâ€State Fiber Supercapacitors with an Enhanced Distributedâ€Capacitance Effect. Small, 2013, 9, 1998-2004.	5.2	133
80	High-performance energy-storage devices based on WO3 nanowire arrays/carbon cloth integrated electrodes. Journal of Materials Chemistry A, 2013, 1, 7167.	5.2	203
81	Hierarchical silicon nanowires-carbon textiles matrix as a binder-free anode for high-performance advanced lithium-ion batteries. Scientific Reports, 2013, 3, 1622.	1.6	136
82	NiCo2O4 nanowire arrays supported on Ni foam for high-performance flexible all-solid-state supercapacitors. Journal of Materials Chemistry A, 2013, 1, 2468.	5.2	344
83	ZnS Nanostructures: Synthesis, Properties, and Applications. Critical Reviews in Solid State and Materials Sciences, 2013, 38, 57-90.	6.8	104
84	Threeâ€Dimensional Hierarchical GeSe ₂ Nanostructures for High Performance Flexible Allâ€Solidâ€State Supercapacitors. Advanced Materials, 2013, 25, 1479-1486.	11.1	236
85	Highâ€Performance Organicâ€Inorganic Hybrid Photodetectors Based on P3HT:CdSe Nanowire Heterojunctions on Rigid and Flexible Substrates. Advanced Functional Materials, 2013, 23, 1202-1209.	7.8	213
86	Singleâ€Crystalline pâ€Type Zn ₃ As ₂ Nanowires for Fieldâ€Effect Transistors and Visibleâ€Light Photodetectors on Rigid and Flexible Substrates. Advanced Functional Materials, 2013, 23, 2681-2690.	7.8	79
87	Zn_2GeO_4 and In_2Ge_2O_7 nanowire mats based ultraviolet photodetectors on rigid and flexible substrates. Optics Express, 2012, 20, 2982.	1.7	96
88	Morphology evolution of urchin-like NiCo2O4 nanostructures and their applications as psuedocapacitors and photoelectrochemical cells. Journal of Materials Chemistry, 2012, 22, 21647.	6.7	310
89	Shape evolution and applications in water purification: the case of CVD-grown Zn2SiO4 straw-bundles. Journal of Materials Chemistry, 2012, 22, 5330.	6.7	33
90	Gas sensors, thermistor and photodetector based on ZnS nanowires. Journal of Materials Chemistry, 2012, 22, 6845.	6.7	140

#	Article	IF	CITATIONS
91	Metal oxide nanowire transistors. Journal of Materials Chemistry, 2012, 22, 13428.	6.7	45
92	Nanorod-assembled Co3O4 hexapods with enhanced electrochemical performance for lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 23541.	6.7	132
93	Fast fabrication of a WO3·2H2O thin film with improved electrochromic properties. Journal of Materials Chemistry, 2012, 22, 19904.	6.7	73
94	Transparent metal oxide nanowire transistors. Nanoscale, 2012, 4, 3001.	2.8	44
95	Porous SnO2 nanoflowers derived from tin sulfide precursors as high performance gas sensors. CrystEngComm, 2012, 14, 6654.	1.3	31
96	Hierarchical Three-Dimensional ZnCo ₂ O ₄ Nanowire Arrays/Carbon Cloth Anodes for a Novel Class of High-Performance Flexible Lithium-Ion Batteries. Nano Letters, 2012, 12, 3005-3011.	4.5	967
97	Electric transport, reversible wettability and chemical sensing of single-crystalline zigzag Zn2SnO4 nanowires. Journal of Materials Chemistry, 2011, 21, 17236.	6.7	39
98	Self-organized hierarchical zinc phosphide nanoribbon–zinc sulfide nanowire heterostructures. CrystEngComm, 2011, 13, 7305.	1.3	7
99	Synthesis, characterizations and improved gas-sensing performance of SnO2 nanospike arrays. Journal of Materials Chemistry, 2011, 21, 19086.	6.7	54
100	Ultrathin In ₂ O ₃ Nanowires with Diameters below 4 nm: Synthesis, Reversible Wettability Switching Behavior, and Transparent Thin-Film Transistor Applications. ACS Nano, 2011, 5, 6148-6155.	7.3	98
101	Indium Oxide Nanospirals Made of Kinked Nanowires. ACS Nano, 2011, 5, 2155-2161.	7.3	55
102	Growth of Directly Transferable In ₂ O ₃ Nanowire Mats for Transparent Thinâ€film Transistor Applications. Advanced Materials, 2011, 23, 771-775.	11.1	96