List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3384802/publications.pdf Version: 2024-02-01

ADIEN ROT

#	Article	IF	CITATIONS
1	Structuring of edible oils by alternatives to crystalline fat. Current Opinion in Colloid and Interface Science, 2007, 12, 221-231.	7.4	314
2	Structuring of edible oils by mixtures of γ-oryzanol with β-sitosterol or related phytosterols. JAOCS, Journal of the American Oil Chemists' Society, 2006, 83, 513-521.	1.9	218
3	Structuring of edible oils by long-chain FA, fatty alcohols, and their mixtures. JAOCS, Journal of the American Oil Chemists' Society, 2004, 81, 1-6.	1.9	173
4	Fibrils of γâ€Oryzanol + βâ€Sitosterol in Edible Oil Organogels. JAOCS, Journal of the American Oil Chemists' Society, 2008, 85, 1127-1134.	1.9	140
5	Influence of crystallisation conditions on the large deformation rheology of inulin gels. Food Hydrocolloids, 2004, 18, 547-556.	10.7	127
6	Non-TAG structuring of edible oils and emulsions. Food Hydrocolloids, 2009, 23, 1184-1189.	10.7	107
7	Organogel-Emulsions with Mixtures of β-Sitosterol and γ-Oryzanol: Influence of Water Activity and Type of Oil Phase on Gelling Capability. Journal of Agricultural and Food Chemistry, 2012, 60, 3462-3470.	5.2	98
8	Acid-induced gelation of heat-treated milk studied by diffusing wave spectroscopy. Colloids and Surfaces B: Biointerfaces, 2001, 21, 245-250.	5.0	95
9	Large deformation rheology of gelatin gels. Polymer Gels and Networks, 1996, 4, 189-227.	0.6	92
10	Edible oleogels in molecular gastronomy. International Journal of Gastronomy and Food Science, 2014, 2, 22-31.	3.0	89
11	Molecular theory of strain hardening of a polymer gel: Application to gelatin. Journal of Chemical Physics, 1996, 104, 9202-9219.	3.0	76
12	Gelation Mechanism of Milk as Influenced by Temperature and pH; Studied by the Use of Transglutaminase Cross-Linked Casein Micelles. Journal of Dairy Science, 2003, 86, 1556-1563.	3.4	75
13	Effect of Sterol Type on Structure of Tubules in Sterol + γ-Oryzanol-Based Organogels. Food Biophysics, 2009, 4, 266-272.	3.0	74
14	Phase diagram of mixtures of stearic acid and stearyl alcohol. Thermochimica Acta, 2003, 404, 9-17.	2.7	72
15	Organogelâ€Based Emulsion Systems, Microâ€Structural Features and Impact on In Vitro Digestion. JAOCS, Journal of the American Oil Chemists' Society, 2009, 86, 733-741.	1.9	65
16	Structuring in β-sitosterol+γ-oryzanol-based emulsion gels during various stages of a temperature cycle. Food Hydrocolloids, 2011, 25, 639-646.	10.7	61
17	The Influence of Concentration and Temperature on the Formation of γ-Oryzanol + β-Sitosterol Tubules in Edible Oil Organogels. Food Biophysics, 2011, 6, 20-25.	3.0	57
18	Multicomponent Hollow Tubules Formed Using Phytosterol and γ-Oryzanol-Based Compounds: An Understanding of Their Molecular Embrace. Journal of Physical Chemistry A, 2010, 114, 8278-8285.	2.5	54

#	Article	IF	CITATIONS
19	Rheological Properties of Glutenin Subfractions in Relation to their Molecular Weight. Journal of Cereal Science, 1997, 26, 15-27.	3.7	47
20	Differential Scanning Calorimetric Study on the Effects of Frozen Storage on Gluten and Dough. Cereal Chemistry, 2003, 80, 366-370.	2.2	46
21	Elucidation of density profile of self-assembled sitosterol + oryzanol tubules with small-angle neutron scattering. Faraday Discussions, 2012, 158, 223.	3.2	45
22	Melting behaviour of schizophyllan extracellular polysaccharide gels in the temperature range between 5 and 20°C. Carbohydrate Polymers, 2001, 45, 363-372.	10.2	44
23	The Phase Behavior of γâ€Oryzanol and βâ€Sitosterol in Edible Oil. JAOCS, Journal of the American Oil Chemists' Society, 2015, 92, 1651-1659.	1.9	44
24	The influence of the type of oil phase on the selfâ€assembly process of γâ€oryzanol + βâ€sitosterol tubu organogel systems. European Journal of Lipid Science and Technology, 2013, 115, 295-300.	ules in 1.5	43
25	Stability of aqueous food grade fibrillar systems against pH change. Faraday Discussions, 2012, 158, 125.	3.2	42
26	Effect of water on self-assembled tubules in β-sitosterol + γ-oryzanol-based organogels. Journal of Physics: Conference Series, 2010, 247, 012025.	0.4	41
27	Stability of Whey-Protein-Stabilized Oil-in-Water Emulsions during Chilled Storage and Temperature Cycling. Journal of Agricultural and Food Chemistry, 2004, 52, 3823-3830.	5.2	40
28	The use of static light scattering and pulsed-field gradient NMR to measure droplet sizes in heat-treated acidified protein-stabilised oil-in-water emulsion gels. International Dairy Journal, 2004, 14, 287-295.	3.0	31
29	Practical implications of the phase-compositional assessment of lipid-based food products by time-domain NMR. JAOCS, Journal of the American Oil Chemists' Society, 2006, 83, 905-912.	1.9	31
30	Manipulation of glycemic response with isomaltulose in a milkâ€based drink does not affect cognitive performance in healthy adults. Molecular Nutrition and Food Research, 2010, 54, 506-515.	3.3	31
31	Observation of fast sound in disparate-mass gas mixtures by light scattering. Physical Review Letters, 1989, 63, 2697-2700.	7.8	28
32	Molecular theory of the yield behavior of a polymer gel: Application to gelatin. Journal of Chemical Physics, 1996, 104, 9220-9233.	3.0	28
33	Effect of denaturation on temperature cycling stability of heated acidified protein-stabilised o/w emulsion gels. Food Hydrocolloids, 2005, 19, 493-501.	10.7	27
34	Temperature cycling stability of pre-heated acidified whey protein-stabilised o/w emulsion gels in relation to the internal surface area of the emulsion. Food Hydrocolloids, 2006, 20, 245-252.	10.7	26
35	Casein micelles as a vehicle for iron fortification of foods. European Food Research and Technology, 2009, 229, 929-935.	3.3	26
36	An ultrahigh vacuum (UHV) apparatus to study the interaction between adsorbates and photons. Measurement Science and Technology, 1997, 8, 1313-1322.	2.6	23

#	Article	IF	CITATIONS
37	Stability of casein micelle subjected to reversible CO2 acidification: Impact of holding time and chilled storage. International Dairy Journal, 2007, 17, 873-880.	3.0	22
38	Small-angle x-ray scattering from supercooled water. Physical Review A, 1988, 38, 6439-6441.	2.5	21
39	The adsorption of Ba on Ag(111). Journal of Physics Condensed Matter, 1993, 5, 5411-5428.	1.8	20
40	Effects of emulsifiers on vegetable-fat based aerated emulsions with interfacial rheological contributions. Food Research International, 2013, 53, 342-351.	6.2	20
41	Influence of Calcium Salt Supplementation on Calcium Equilibrium in Skim Milk During pH Cycle. Journal of Dairy Science, 2007, 90, 2155-2162.	3.4	18
42	Effect of hydrolysed egg protein on brain tryptophan availability. British Journal of Nutrition, 2011, 105, 611-617.	2.3	18
43	Effect of processing on droplet cluster structure in emulsion gels. Food Hydrocolloids, 2007, 21, 844-854.	10.7	16
44	Rayleigh-Brillouin light-scattering study of both fast and slow sound in binary gas mixtures. Physical Review A, 1991, 44, 8062-8071.	2.5	14
45	Effects of Oil Type on Sterol-Based Organogels and Emulsions. Food Biophysics, 2021, 16, 109-118.	3.0	14
46	Iron fortification of skim milk: Minerals and 57Fe Mössbauer study. International Dairy Journal, 2009, 19, 56-63.	3.0	13
47	Edible Oil Organogels Based on Self-assembled \hat{I}^2 -sitosterol + \hat{I}^3 -oryzanol Tubules. , 2011, , 49-79.		13
48	Osmotic Properties of Gluten. Cereal Chemistry, 2003, 80, 404-408.	2.2	11
49	Modelling acidified emulsion gels as Matryoshka composites: Firmness and syneresis. Food Hydrocolloids, 2014, 34, 88-97.	10.7	11
50	Brillouin light scattering from a biopolymer gel: hypersonic sound waves in gelatin. Colloid and Polymer Science, 1995, 273, 252-256.	2.1	10
51	Edible Oil Oleogels Based on Self-assembled \hat{I}^2 -Sitosterol + \hat{I}^3 -Oryzanol Tubules. , 2018, , 31-63.		10
52	Stability of casein micelles subjected to CO2 reversible acidification: Impact of carbonation temperature and chilled storage time. International Dairy Journal, 2008, 18, 221-227.	3.0	9
53	Rayleigh–Brillouin light scattering from multicomponent mixtures: The Landau–Placzek ratio. Journal of Applied Physics, 1989, 66, 2118-2121.	2.5	7
54	Probing the droplet cluster structure in acidified temperature ycled o/w emulsion gels by means of SESANS ^{â€} . International Journal of Food Science and Technology, 2007, 42, 746-752.	2.7	7

#	Article	IF	CITATIONS
55	Phase-Separating Binary Polymer Mixtures: The Degeneracy of the Virial Coefficients and Their Extraction from Phase Diagrams. ACS Omega, 2021, 6, 7862-7878.	3.5	7
56	Fast and slow sound in binary fluid mixtures. Journal of Physics Condensed Matter, 1990, 2, SA157-SA160.	1.8	6
57	Surface diffusion during thin film annealing studied by XPS. Surface Science, 1993, 287-288, 901-906.	1.9	6
58	Phytosterols. , 2019, , 225-228.		6
59	Second order virial coefficients from phase diagrams. Food Hydrocolloids, 2020, 101, 105546.	10.7	6
60	The texture and microstructure of spreads * *This chapter is a revised version of: Bot, A., Flöter, E., Lammers, J.G., and Pelan, E.G. (2003). â€~Controlling the texture of spreads', in Texture in Food. Vol. 1. Semi-solid Foods, editor B.M. McKenna, Woodhead Publishing, Cambridge, pp. 350–372 , 2007, , 575-599.		6
61	At-line and inline prediction of droplet size in mayonnaise with near-infrared spectroscopy. Infrared Physics and Technology, 2022, 123, 104155.	2.9	6
62	Rayleigh-Brillouin light scattering from noble gas mixtures. 2. Partial structure factors. The Journal of Physical Chemistry, 1991, 95, 4679-4685.	2.9	4
63	Rayleigh-Brillouin light scattering from noble gas mixtures. 1. The Landau-Placzek ratio. The Journal of Physical Chemistry, 1991, 95, 4673-4679.	2.9	4
64	Corrigendum to "second order virial coefficients from phase diagrams.―[Food Hydrocolloids 101 (2020) 105546]. Food Hydrocolloids, 2021, 112, 106324.	10.7	4
65	Hydrodynamic states in water below the temperature of the density maximum: The limit to supercooling. Chemical Physics Letters, 1988, 145, 242-246.	2.6	2
66	Light scattering as a probe of thermodynamic quantities in a binary mixture. Fluid Phase Equilibria, 1992, 77, 285-295.	2.5	2
67	Cream Cheese as an Acidified Protein-Stabilized Emulsion Gel. , 0, , 651-672.		2
68	CHAPTER 5. Structuring Edible Oil Phases with Fatty Acids and Alcohols. Food Chemistry, Function and Analysis, 2017, , 95-105.	0.2	2
69	Comment on "Refractive index variations in pure liquids: a new theoretical relation". The Journal of Physical Chemistry, 1993, 97, 2804-2804.	2.9	1
70	Rayleigh-Brillouin Light Scattering: Spectral Moments and Sum Rules. The Journal of Physical Chemistry, 1994, 98, 3139-3147.	2.9	1
71	Controlling the texture of spreads. , 2003, , .		1
72	Meta-analysis of critical points to determine second virial coefficients for binary biopolymer mixtures. Food Hydrocolloids, 2022, 126, 107473.	10.7	1

#	Article	IF	CITATIONS
73	Microstructural aspects of protein-based drinks. , 2007, , 622-647.		0
74	Non-triglyceride structuring of edible oils and emulsions. Acta Crystallographica Section A: Foundations and Advances, 2010, 66, s250-s251.	0.3	0
75	TIME-TEMPERATURE SUPERPOSITION FOR NETWORKS FORMED BY GLUTEN SUBFRACTIONS. , 1995, , 99-105.		0