Pedro O Miranda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3384355/publications.pdf

Version: 2024-02-01

34 papers

1,010 citations

16 h-index 434063 31 g-index

41 all docs

41 docs citations

times ranked

41

1025 citing authors

#	Article	IF	CITATIONS
1	Recent Uses of Iron (III) Chloride in Organic Synthesis. Current Organic Chemistry, 2006, 10, 457-476.	0.9	123
2	A New Catalytic Prins Cyclization Leading to Oxa- and Azacycles. Organic Letters, 2009, 11, 357-360.	2.4	120
3	Iron(III)-Catalyzed Prins-Type Cyclization Using Homopropargylic Alcohol:  A Method for the Synthesis of 2-Alkyl-4-halo-5,6-dihydro-2H-pyrans. Organic Letters, 2003, 5, 1979-1982.	2.4	107
4	Fe(III) Halides as Effective Catalysts in Carbonâ^'Carbon Bond Formation: Synthesis of 1,5-Dihalo-1,4-dienes, α,β-Unsaturated Ketones, and Cyclic Ethers. Journal of Organic Chemistry, 2005, 70, 57-62.	1.7	93
5	Prins-Type Synthesis and SAR Study of Cytotoxic Alkyl Chloro Dihydropyrans. ChemMedChem, 2006, 1, 323-329.	1.6	69
6	The Silylalkyne-Prins Cyclization:  Stereoselective Synthesis of Tetra- and Pentasubstituted Halodihydropyrans. Organic Letters, 2006, 8, 1633-1636.	2.4	59
7	Continuous-flow enantioselective $\hat{l}\pm$ -aminoxylation of aldehydes catalyzed by a polystyrene-immobilized hydroxyproline. Beilstein Journal of Organic Chemistry, 2011, 7, 1486-1493.	1.3	51
8	Factors Controlling the Alkyne Prins Cyclization: The Stability of Dihydropyranyl Cations. Chemistry - A European Journal, 2008, 14, 6260-6268.	1.7	34
9	Synthesis and biological evaluation of pyrimidine analogs of antimycobacterial purines. Bioorganic and Medicinal Chemistry, 2010, 18, 3885-3897.	1.4	31
10	Influencing Antibody-Mediated Attenuation of Methamphetamine CNS Distribution through Vaccine Linker Design. ACS Chemical Neuroscience, 2017, 8, 468-472.	1.7	26
11	Prins Cyclization Catalyzed by a Fe ^{III} /Trimethylsilyl Halide System: The Oxocarbenium Ion Pathway versus the [2+2] Cycloaddition. Chemistry - A European Journal, 2015, 21, 15211-15217.	1.7	24
12	Ferric chloride: a mild and versatile reagent for the formation of 1,6-anhydro glucopyranoses. Tetrahedron Letters, 2003, 44, 3931-3934.	0.7	23
13	In situ generation of 2,3-allenolates in the coupling of secondary homopropargylic alcohols and aldehydes. Tetrahedron Letters, 2006, 47, 283-286.	0.7	22
14	β′â€Hydroxyâ€Î±,βâ€unsaturated ketones: A new pharmacophore for the design of anticancer drugs. Part 2 ChemMedChem, 2008, 3, 1740-1747.	1.6	21
15	Synthesis of complex fused polycyclic heterocycles utilizing IMDAF reactions of allylamino- or allyloxy-furyl (hetero) arenes. Tetrahedron, 2012, 68, 1869-1885.	1.0	21
16	An enzymatic advance in nicotine cessation therapy. Chemical Communications, 2018, 54, 1686-1689.	2.2	18
17	Direct Access to 2,3,4,6-Tetrasubstituted Tetrahydro-2 <i>H</i> ⊢yrans via Tandem S _N 2′–Prins Cyclization. Organic Letters, 2017, 19, 4834-4837.	2.4	17
18	Catalytic Batch and Continuous Flow Production of Highly Enantioenriched Cyclohexane Derivatives with Polymer-Supported Diarylprolinol Silyl Ethers. Synlett, 2011, 2011, 464-468.	1.0	16

#	Article	IF	CITATIONS
19	Crystallography Coupled with Kinetic Analysis Provides Mechanistic Underpinnings of a Nicotine-Degrading Enzyme. Biochemistry, 2018, 57, 3741-3751.	1.2	16
20	Antiproliferative activity of 4-chloro-5,6-dihydro-2H-pyrans. Part 2: Enhancement of drug cytotoxicity. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 3087-3090.	1.0	15
21	β′-Hydroxy-α,β-unsaturated ketones: A new pharmacophore for the design of anticancer drugs. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 2266-2269.	1.0	14
22	One-pot synthesis and SAR study of cis-2,6-dialkyl-4-chloro-tetrahydropyrans. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 3135-3138.	1.0	13
23	Enantioselective Synthesis and Biological Activity of (3S,4R)- and (3S,4S)-3-Hydroxy-4-hydroxymethyl-4-butanolides in Relation to PGE2. Journal of Medicinal Chemistry, 2004, 47, 292-295.	2.9	12
24	Iron(III)-Catalyzed Prins Cyclization towards the Synthesis of trans-Fused Bicyclic Tetrahydropyrans. Synthesis, 2015, 47, 1791-1798.	1.2	12
25	Mining a Kröhnke Pyridine Library for Anti-Arenavirus Activity. ACS Infectious Diseases, 2018, 4, 815-824.	1.8	11
26	Potassium fluoride: A convenient, non-covalent support for the immobilization of organocatalysts through strong hydrogen bonds. Journal of Catalysis, 2013, 305, 169-178.	3.1	10
27	A Fluorous Proline Organocatalyst with Acetoneâ€Dependent Aldolase Behavior. European Journal of Organic Chemistry, 2013, 2013, 6254-6258.	1.2	9
28	Synthetic molecules for disruption of the MYC protein-protein interface. Bioorganic and Medicinal Chemistry, 2018, 26, 4234-4239.	1.4	8
29	Synthesis of Imidazole Derivatives with Antimycobacterial Activity. Archiv Der Pharmazie, 2010, 343, 40-47.	2.1	6
30	Iron(II) and Copper(I) Control the Total Regioselectivity in the Hydrobromination of Alkenes. Organic Letters, 2021, 23, 6105-6109.	2.4	4
31	Unexpected halogen exchange with halogenated solvents in the iron(III) promoted oxa-alkyne and aza-alkyne Prins cyclizations. Arkivoc, 2007, 2007, 331-343.	0.3	4
32	Synthesis of Heterocycles With Iron Salts as Sustainable Metal Catalysts., 2018,, 193-229.		1
33	Iron(III)-Catalyzed Prins-type Cyclization Using Homopropargylic Alcohol: A Method for the Synthesis of 2-Alkyl-4-halo-5,6-dihydro-2H-pyrans ChemInform, 2003, 34, no.	0.1	0
34	Fe(III) Halides as Effective Catalysts in Carbonâ€"Carbon Bond Formation: Synthesis of 1,5-Dihalo-1,4-dienes, α,β-Unsaturated Ketones, and Cyclic Ethers ChemInform, 2005, 36, no.	0.1	0