Gerlinde R Van De Walle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3384299/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Establishment and characterization of equine mammary organoids using a method translatable to other non-traditional model species. Development (Cambridge), 2022, 149, .	2.5	4
2	A TMPRSS2 inhibitor acts as a pan-SARS-CoV-2 prophylactic and therapeutic. Nature, 2022, 605, 340-348.	27.8	108
3	Comparative Efficacy of Topical Ophthalmic Ganciclovir and Oral Famciclovir in Cats with Experimental Ocular Feline Herpesvirus-1 Epithelial Infection. Journal of Ocular Pharmacology and Therapeutics, 2022, 38, 339-347.	1.4	6
4	The Horse as a Model for the Study of Cutaneous Wound Healing. Advances in Wound Care, 2021, 10, 381-399.	5.1	11
5	Beyond tradition and convention: benefits of non-traditional model organisms in cancer research. Cancer and Metastasis Reviews, 2021, 40, 47-69.	5.9	11
6	Translational Animal Models Provide Insight Into Mesenchymal Stromal Cell (MSC) Secretome Therapy. Frontiers in Cell and Developmental Biology, 2021, 9, 654885.	3.7	20
7	The Lack of a Representative Tendinopathy Model Hampers Fundamental Mesenchymal Stem Cell Research. Frontiers in Cell and Developmental Biology, 2021, 9, 651164.	3.7	9
8	Pathogenesis, MicroRNAâ€122 Geneâ€Regulation, and Protective Immune Responses After Acute Equine Hepacivirus Infection. Hepatology, 2021, 74, 1148-1163.	7.3	14
9	Mesenchymal stromal cellâ€secreted CCL2 promotes antibacterial defense mechanisms through increased antimicrobial peptide expression in keratinocytes. Stem Cells Translational Medicine, 2021, 10, 1666-1679.	3.3	20
10	Single-cell resolution landscape of equine peripheral blood mononuclear cells reveals diverse cell types including T-bet+ B cells. BMC Biology, 2021, 19, 13.	3.8	25
11	Small but mighty: old and new parvoviruses of veterinary significance. Virology Journal, 2021, 18, 210.	3.4	30
12	The equine mesenchymal stromal cell secretome inhibits equid herpesvirus type 1 strain Ab4 in epithelial cells. Research in Veterinary Science, 2021, 141, 76-80.	1.9	1
13	Equine pegiviruses cause persistent infection of bone marrow and are not associated with hepatitis. PLoS Pathogens, 2020, 16, e1008677.	4.7	17
14	Single-cell RNA sequencing of equine mesenchymal stromal cells from primary donor-matched tissue sources reveals functional heterogeneity in immune modulation and cell motility. Stem Cell Research and Therapy, 2020, 11, 524.	5.5	27
15	One health in regenerative medicine: report on the second Havemeyer symposium on regenerative medicine in horses. Regenerative Medicine, 2020, 15, 1775-1787.	1.7	4
16	Secreted sphingomyelins modulate low mammary cancer incidence observed in certain mammals. Scientific Reports, 2020, 10, 20580.	3.3	8
17	First report of equine parvovirusâ€hepatitisâ€associated Theiler's disease in Europe. Equine Veterinary Journal, 2020, 52, 841-847.	1.7	19
18	Tropism, pathology, and transmission of equine parvovirus-hepatitis. Emerging Microbes and Infections, 2020, 9, 651-663.	6.5	32

GERLINDE R VAN DE WALLE

#	Article	IF	CITATIONS
19	The mesenchymal stromal cell secretome impairs methicillin-resistant <i>Staphylococcus aureus</i> biofilms via cysteine protease activity in the equine model. Stem Cells Translational Medicine, 2020, 9, 746-757.	3.3	39
20	What Do We Know About Hepatitis Viruses in Horses?. Veterinary Clinics of North America Equine Practice, 2019, 35, 351-362.	0.7	17
21	Effects of orally administered raltegravir in cats with experimentally induced ocular and respiratory feline herpesvirus-1 infection. American Journal of Veterinary Research, 2019, 80, 490-497.	0.6	5
22	Viral testing of 18 consecutive cases of equine serum hepatitis: A prospective study (2014â€2018). Journal of Veterinary Internal Medicine, 2019, 33, 251-257.	1.6	46
23	Viral testing of 10 cases of Theiler's disease and 37 inâ€contact horses in the absence of equine biologic product administration: A prospective study (2014â€2018). Journal of Veterinary Internal Medicine, 2019, 33, 258-265.	1.6	40
24	The secretome of adipose-derived mesenchymal stem cells protects SH-SY5Y cells from arsenic-induced toxicity, independent of a neuron-like differentiation mechanism. NeuroToxicology, 2018, 67, 54-64.	3.0	10
25	BB-Cl-Amidine as a novel therapeutic for canine and feline mammary cancer via activation of the endoplasmic reticulum stress pathway. BMC Cancer, 2018, 18, 412.	2.6	21
26	The secretome from bovine mammosphere-derived cells (MDC) promotes angiogenesis, epithelial cell migration, and contains factors associated with defense and immunity. Scientific Reports, 2018, 8, 5378.	3.3	13
27	Multispectral fluorescence-activated cell sorting of B and T cell subpopulations from equine peripheral blood. Veterinary Immunology and Immunopathology, 2018, 199, 22-31.	1.2	16
28	Conserved and variable: Understanding mammary stem cells across species. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2018, 93, 125-136.	1.5	19
29	In vitro efficacy of povidone iodine and hydroxyethyl cellulose, alone and in combination, against common feline ocular pathogens. Veterinary Journal, 2018, 241, 38-41.	1.7	5
30	Evaluation of topical ophthalmic ganciclovir gel for the treatment of dogs with experimentally induced ocular canine herpesvirus-1 infection. American Journal of Veterinary Research, 2018, 79, 762-769.	0.6	11
31	Plasminogen activator inhibitor-1 and tenascin-C secreted by equine mesenchymal stromal cells stimulate dermal fibroblast migration in vitro and contribute to wound healing in vivo. Cytotherapy, 2018, 20, 1061-1076.	0.7	27
32	Effect of a Histone Demethylase Inhibitor on Equine Herpesvirus-1 Activity In Vitro. Frontiers in Veterinary Science, 2018, 5, 34.	2.2	5
33	The HIV Integrase Inhibitor Raltegravir Inhibits Felid Alphaherpesvirus 1 Replication by Targeting both DNA Replication and Late Gene Expression. Journal of Virology, 2018, 92, .	3.4	1
34	Equine mesenchymal stromal cells from different tissue sources display comparable immune-related gene expression profiles in response to interferon gamma (IFN)-γ. Veterinary Immunology and Immunopathology, 2018, 202, 25-30.	1.2	20
35	Transcriptome profiling of alphaherpesvirus-infected cells treated with the HIV-integrase inhibitor raltegravir reveals profound and specific alterations in host transcription. Journal of General Virology, 2018, 99, 1115-1128.	2.9	1
36	Differential signaling pathway activation in 7,12-dimethylbenz[a] anthracene (DMBA)-treated mammary stem/progenitor cells from species with varying mammary cancer incidence. Oncotarget, 2018, 9, 32761-32774.	1.8	10

#	Article	IF	CITATIONS
37	Carcinoma of the mammary gland in a mare. Equine Veterinary Education, 2017, 29, 370-375.	0.6	5
38	Electric Cell-Substrate Impedance Sensing To Monitor Viral Growth and Study Cellular Responses to Infection with Alphaherpesviruses in Real Time. MSphere, 2017, 2, .	2.9	29
39	Secreted factors from equine mesenchymal stromal cells diminish the effects of TGFâ€Ĥ²1 on equine dermal fibroblasts and alter the phenotype of dermal fibroblasts isolated from cutaneous fibroproliferative wounds. Wound Repair and Regeneration, 2017, 25, 234-247.	3.0	14
40	First demonstration of equid gammaherpesviruses within the gastric mucosal epithelium of horses. Virus Research, 2017, 242, 30-36.	2.2	10
41	Antimicrobial peptides secreted by equine mesenchymal stromal cells inhibit the growth of bacteria commonly found in skin wounds. Stem Cell Research and Therapy, 2017, 8, 157.	5.5	92
42	Equine Mesenchymal Stromal Cells from Different Sources Efficiently Differentiate into Hepatocyte-Like Cells. Tissue Engineering - Part C: Methods, 2016, 22, 596-607.	2.1	12
43	A Comparative Study on the In Vitro Effects of the DNA Methyltransferase Inhibitor 5-Azacytidine (5-AzaC) in Breast/Mammary Cancer of Different Mammalian Species. Journal of Mammary Gland Biology and Neoplasia, 2016, 21, 51-66.	2.7	21
44	Microvesicle-mediated Wnt/β-Catenin Signaling Promotes Interspecies Mammary Stem/Progenitor Cell Growth. Journal of Biological Chemistry, 2016, 291, 24390-24405.	3.4	16
45	Equine herpesvirus type 1 (EHV1) induces alterations in the immunophenotypic profile of equine monocyte-derived dendritic cells. Veterinary Journal, 2016, 210, 85-88.	1.7	1
46	A novel corneal explant model system to evaluate antiviral drugs against feline herpesvirus type 1 (FHV-1). Journal of General Virology, 2016, 97, 1414-1425.	2.9	15
47	Microencapsulated equine mesenchymal stromal cells promote cutaneous wound healing in vitro. Stem Cell Research and Therapy, 2015, 6, 66.	5.5	60
48	<i>In Vitro</i> and <i>In Vivo</i> Evaluation of Cidofovir as a Topical Ophthalmic Antiviral for Ocular Canine Herpesvirus-1 Infections in Dogs. Journal of Ocular Pharmacology and Therapeutics, 2015, 31, 642-649.	1.4	12
49	Equid herpesvirus 1 (EHV1) infection of equine mesenchymal stem cells induces a pUL56-dependent downregulation of select cell surface markers. Veterinary Microbiology, 2015, 176, 32-39.	1.9	12
50	Characterization of nonprimate hepacivirus and construction of a functional molecular clone. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2192-2197.	7.1	84
51	Characterization and profiling of immunomodulatory genes of equine mesenchymal stromal cells from non-invasive sources. Stem Cell Research and Therapy, 2014, 5, 6.	5.5	47
52	Establishment and Characterization of an Air-Liquid Canine Corneal Organ Culture Model To Study Acute Herpes Keratitis. Journal of Virology, 2014, 88, 13669-13677.	3.4	15
53	Peripheral Blood-Derived Mesenchymal Stromal Cells Promote Angiogenesis via Paracrine Stimulation of Vascular Endothelial Growth Factor Secretion in the Equine Model. Stem Cells Translational Medicine, 2014, 3, 1514-1525.	3.3	56
54	Equine herpesvirus type 1 pUL56 modulates innate responses of airway epithelial cells. Virology, 2014, 464-465, 76-86.	2.4	23

GERLINDE R VAN DE WALLE

#	Article	IF	CITATIONS
55	Mesenchymal stem cell therapy in horses: useful beyond orthopedic injuries?. Veterinary Quarterly, 2013, 33, 234-241.	6.7	48
56	Culture and characterisation of equine peripheral blood mesenchymal stromal cells. Veterinary Journal, 2013, 195, 107-113.	1.7	85
57	Mammary Stem Cell Research in Veterinary Science: An Update. Stem Cells and Development, 2013, 22, 1743-1751.	2.1	23
58	The role of BRCA1 in DNA double-strand repair: Past and present. Experimental Cell Research, 2013, 319, 575-587.	2.6	83
59	Evaluation of metaphylactic RNA interference to prevent equine herpesvirus type 1 infection in experimental herpesvirus myeloencephalopathy in horses. American Journal of Veterinary Research, 2013, 74, 248-256.	0.6	6
60	Identification and Characterization of Equine Herpesvirus Type 1 pUL56 and Its Role in Virus-Induced Downregulation of Major Histocompatibility Complex Class I. Journal of Virology, 2012, 86, 3554-3563.	3.4	45
61	Profiling chemokine–glycoprotein G interactions: implications for alphaherpesviral immune evasion. Future Virology, 2012, 7, 441-444.	1.8	0
62	The role of secreted glycoprotein G of equine herpesvirus type 1 and type 4 (EHV-1 and EHV-4) in immune modulation and virulence. Virus Research, 2012, 169, 203-211.	2.2	8
63	Stem/Progenitor Cells in Non-Lactating Versus Lactating Equine Mammary Gland. Stem Cells and Development, 2012, 21, 3055-3067.	2.1	17
64	Tendon Regeneration in Human and Equine Athletes. Sports Medicine, 2012, 42, 871-890.	6.5	44
65	In search for crossâ€reactivity to immunophenotype equine mesenchymal stromal cells by multicolor flow cytometry. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2012, 81A, 312-323.	1.5	85
66	Evaluation of the antiviral activity of (1′S,2′R)-9-[[1′,2′-bis(hydroxymethyl)cycloprop-1′-yl]methyl]g (A-5021) against equine herpesvirus type 1 in cell monolayers and equine nasal mucosal explants. Antiviral Research, 2012, 93, 234-238.	uanine 4.1	10
67	Histone modifications in herpesvirus infections. Biology of the Cell, 2012, 104, 139-164.	2.0	11
68	Differential gene expression of the toll-like receptor-4 cascade and neutrophil function in early- and mid-lactating dairy cows. Journal of Dairy Science, 2011, 94, 1277-1288.	3.4	34
69	Markers of stemness in equine mesenchymal stem cells: a plea for uniformity. Theriogenology, 2011, 75, 1431-1443.	2.1	137
70	Anaphylatoxin C5a-induced toll-like receptor 4 signaling in bovine neutrophils. Journal of Dairy Science, 2011, 94, 152-164.	3.4	22
71	Equine alphaherpesviruses (EHV-1 and EHV-4) differ in their efficiency to infect mononuclear cells during early steps of infection in nasal mucosal explants. Veterinary Microbiology, 2011, 152, 21-28.	1.9	32
72	Differences in replication kinetics and cell tropism between neurovirulent and non-neurovirulent EHV1 strains during the acute phase of infection in horses. Veterinary Microbiology, 2010, 142, 242-253.	1.9	55

GERLINDE R VAN DE WALLE

#	Article	IF	CITATIONS
73	Pathogenic potential of equine alphaherpesviruses: The importance of the mononuclear cell compartment in disease outcome. Veterinary Microbiology, 2010, 143, 21-28.	1.9	35
74	A vectored equine herpesvirus type 1 (EHV-1) vaccine elicits protective immune responses against EHV-1 and H3N8 equine influenza virus. Vaccine, 2010, 28, 1048-1055.	3.8	24
75	The effect of siRNA treatment on experimental equine herpesvirus type 1 (EHV-1) infection in horses. Virus Research, 2010, 147, 176-181.	2.2	16
76	Analysis of the Herpesvirus Chemokine-binding Glycoprotein G Residues Essential for Chemokine Binding and Biological Activity. Journal of Biological Chemistry, 2009, 284, 5968-5976.	3.4	14
77	A Singleâ€Nucleotide Polymorphism in a Herpesvirus DNA Polymerase Is Sufficient to Cause Lethal Neurological Disease. Journal of Infectious Diseases, 2009, 200, 20-25.	4.0	67
78	Investigation of the prevalence of neurologic equine herpes virus type 1 (EHV-1) in a 23-year retrospective analysis (1984–2007). Veterinary Microbiology, 2009, 139, 375-378.	1.9	87
79	The role of dendritic cells in alphaherpesvirus infections: archetypes and paradigms. Reviews in Medical Virology, 2009, 19, 338-358.	8.3	2
80	Effective Treatment of Respiratory Alphaherpesvirus Infection Using RNA Interference. PLoS ONE, 2009, 4, e4118.	2.5	29
81	CCL3 and Viral Chemokine-Binding Protein gG Modulate Pulmonary Inflammation and Virus Replication during Equine Herpesvirus 1 Infection. Journal of Virology, 2008, 82, 1714-1722.	3.4	31
82	Equine Herpesvirus 1 Entry via Endocytosis Is Facilitated by αV Integrins and an RSD Motif in Glycoprotein D. Journal of Virology, 2008, 82, 11859-11868.	3.4	45
83	Alphaherpesviruses and Chemokines: Pas de Deux Not Yet Brought to Perfection. Journal of Virology, 2008, 82, 6090-6097.	3.4	21
84	Herpesvirus Chemokine-Binding Glycoprotein G (gG) Efficiently Inhibits Neutrophil Chemotaxis In Vitro and In Vivo. Journal of Immunology, 2007, 179, 4161-4169.	0.8	49
85	Activation of αllbβ3 is a sufficient but also an imperative prerequisite for activation of α2β1 on platelets. Blood, 2007, 109, 595-602.	1.4	43
86	Herpesvirus interference with virus-specific antibodies: Bridging antibodies, internalizing antibodies, and hiding from antibodies. Veterinary Microbiology, 2006, 113, 257-263.	1.9	17
87	Two Functional Active Conformations of the Integrin α2β1, Depending on Activation Condition and Cell Type. Journal of Biological Chemistry, 2005, 280, 36873-36882.	3.4	38
88	Virus complement evasion strategies. Journal of General Virology, 2003, 84, 1-15.	2.9	115
89	Antibody-induced internalization of viral glycoproteins and gE–gl Fc receptor activity protect pseudorabies virus-infected monocytes from efficient complement-mediated lysis. Journal of General Virology, 2003, 84, 939-947.	2.9	38
90	Pseudorabies virus (PRV)-specific antibodies suppress intracellular viral protein levels in PRV-infected monocytes. Journal of General Virology, 2003, 84, 2969-2973.	2.9	6

#	Article	IF	CITATIONS
91	Transmission of pseudorabies virus from immune-masked blood monocytes to endothelial cells. Journal of General Virology, 2003, 84, 629-637.	2.9	11
92	Antibody-induced internalization of viral glycoproteins in pseudorabies virus-infected monocytes and role of the cytoskeleton: a confocal study. Veterinary Microbiology, 2002, 86, 51-57.	1.9	7
93	Temporary disturbance of actin stress fibers in swine kidney cells during pseudorabies virus infection. Veterinary Microbiology, 2002, 86, 89-94.	1.9	8