
David Moreira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3384180/publications.pdf Version: 2024-02-01

DAVID MODELDA

#	Article	IF	CITATIONS
1	Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature, 2001, 409, 603-607.	27.8	838
2	The origin of red algae and the evolution of chloroplasts. Nature, 2000, 405, 69-72.	27.8	402
3	Autochthonous eukaryotic diversity in hydrothermal sediment and experimental microcolonizers at the Mid-Atlantic Ridge. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 697-702.	7.1	337
4	Ten reasons to exclude viruses from the tree of life. Nature Reviews Microbiology, 2009, 7, 306-311.	28.6	322
5	Symbiosis Between Methanogenic Archaea and δ-Proteobacteria as the Origin of Eukaryotes: The Syntrophic Hypothesis. Journal of Molecular Evolution, 1998, 47, 517-530.	1.8	282
6	The molecular ecology of microbial eukaryotes unveils a hidden world. Trends in Microbiology, 2002, 10, 31-38.	7.7	279
7	An Early-Branching Freshwater Cyanobacterium at the Origin of Plastids. Current Biology, 2017, 27, 386-391.	3.9	275
8	Origins and Early Evolution of the Mevalonate Pathway of Isoprenoid Biosynthesis in the Three Domains of Life. Molecular Biology and Evolution, 2011, 28, 87-99.	8.9	270
9	Ancestral lipid biosynthesis and early membrane evolution. Trends in Biochemical Sciences, 2004, 29, 469-477.	7.5	252
10	The early evolution of lipid membranes and the three domains of life. Nature Reviews Microbiology, 2012, 10, 507-515.	28.6	249
11	Early–branching or fast–evolving eukaryotes? An answer based on slowly evolving positions. Proceedings of the Royal Society B: Biological Sciences, 2000, 267, 1213-1221.	2.6	226
12	Giant viruses, giant chimeras: The multiple evolutionary histories of Mimivirus genes. BMC Evolutionary Biology, 2008, 8, 12.	3.2	223
13	Eubacterial phylogeny based on translational apparatus proteins. Trends in Genetics, 2002, 18, 1-5.	6.7	221
14	Intracellular Ca-carbonate biomineralization is widespread in cyanobacteria. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10933-10938.	7.1	221
15	Bacterial diversity in hydrothermal sediment and epsilonproteobacterial dominance in experimental microcolonizers at the Mid-Atlantic Ridge. Environmental Microbiology, 2003, 5, 961-976.	3.8	218
16	Metabolic symbiosis at the origin of eukaryotes. Trends in Biochemical Sciences, 1999, 24, 88-93.	7.5	213
17	Metagenomics of the Deep Mediterranean, a Warm Bathypelagic Habitat. PLoS ONE, 2007, 2, e914.	2.5	213
18	Global Dispersal and Ancient Cryptic Species in the Smallest Marine Eukaryotes. Molecular Biology and Evolution, 2006, 23, 23-29.	8.9	210

#	Article	IF	CITATIONS
19	An Early-Branching Microbialite Cyanobacterium Forms Intracellular Carbonates. Science, 2012, 336, 459-462.	12.6	208
20	The extent of protist diversity: insights from molecular ecology of freshwater eukaryotes. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 2073-2081.	2.6	203
21	The Environmental Clade LKM11 and Rozella Form the Deepest Branching Clade of Fungi. Protist, 2010, 161, 116-121.	1.5	197
22	Global eukaryote phylogeny: Combined small- and large-subunit ribosomal DNA trees support monophyly of Rhizaria, Retaria and Excavata. Molecular Phylogenetics and Evolution, 2007, 44, 255-266.	2.7	166
23	Eukaryotic diversity associated with carbonates and fluid?seawater interface in Lost City hydrothermal field. Environmental Microbiology, 2007, 9, 546-554.	3.8	166
24	Marked seasonality and high spatial variability of protist communities in shallow freshwater systems. ISME Journal, 2015, 9, 1941-1953.	9.8	165
25	Accuracy of protist diversity assessments: morphology compared with cloning and direct pyrosequencing of 18S rRNA genes and ITS regions using the conspicuous tintinnid ciliates as a case study. ISME Journal, 2013, 7, 244-255.	9.8	159
26	Metabolic Symbiosis and the Birth of the Plant Kingdom. Molecular Biology and Evolution, 2008, 25, 536-548.	8.9	153
27	Comparative metagenomics of bathypelagic plankton and bottom sediment from the Sea of Marmara. ISME Journal, 2011, 5, 285-304.	9.8	140
28	Bacterial diversity and carbonate precipitation in the giant microbialites from the highly alkaline Lake Van, Turkey. Extremophiles, 2005, 9, 263-274.	2.3	137
29	An updated view of kinetoplastid phylogeny using environmental sequences and a closer outgroup: proposal for a new classification of the class Kinetoplastea. International Journal of Systematic and Evolutionary Microbiology, 2004, 54, 1861-1875.	1.7	130
30	Selective forces for the origin of the eukaryotic nucleus. BioEssays, 2006, 28, 525-533.	2.5	129
31	Archaeal and bacterial community composition of sediment and plankton from a suboxic freshwater pond. Research in Microbiology, 2007, 158, 213-227.	2.1	128
32	A Phylogenomic Framework to Study the Diversity and Evolution of Stramenopiles (=Heterokonts). Molecular Biology and Evolution, 2016, 33, 2890-2898.	8.9	125
33	The evolutionary history of ribosomal protein RpS14:. Trends in Genetics, 2000, 16, 529-533.	6.7	124
34	Rooting the Domain Archaea by Phylogenomic Analysis Supports the Foundation of the New Kingdom Proteoarchaeota. Genome Biology and Evolution, 2015, 7, 191-204.	2.5	124
35	Hindsight in the relative abundance, metabolic potential and genome dynamics of uncultivated marine archaea from comparative metagenomic analyses of bathypelagic plankton of different oceanic regions. ISME Journal, 2008, 2, 865-886.	9.8	113
36	Symbiosis in eukaryotic evolution. Journal of Theoretical Biology, 2017, 434, 20-33.	1.7	113

#	Article	IF	CITATIONS
37	Phytoplankton diversity and cyanobacterial dominance in a hypereutrophic shallow lake with biologically produced alkaline pH. Extremophiles, 2004, 8, 109-115.	2.3	111
38	Prokaryotic and Eukaryotic Community Structure in Field and Cultured Microbialites from the Alkaline Lake Alchichica (Mexico). PLoS ONE, 2011, 6, e28767.	2.5	111
39	Metagenome of the Mediterranean deep chlorophyll maximum studied by direct and fosmid library 454 pyrosequencing. ISME Journal, 2010, 4, 1154-1166.	9.8	109
40	Wide bacterial diversity associated with tubes of the vent worm Riftia pachyptila. Environmental Microbiology, 2002, 4, 204-215.	3.8	108
41	Open Questions on the Origin of Eukaryotes. Trends in Ecology and Evolution, 2015, 30, 697-708.	8.7	107
42	The new phylogeny of eukaryotes. Current Opinion in Genetics and Development, 2000, 10, 596-601.	3.3	106
43	The Syntrophy hypothesis for the origin of eukaryotes revisited. Nature Microbiology, 2020, 5, 655-667.	13.3	104
44	A metagenomic analysis of soil bacteria extends the diversity of quorumâ€quenching lactonases. Environmental Microbiology, 2008, 10, 560-570.	3.8	100
45	Reevaluating the Green Contribution to Diatom Genomes. Genome Biology and Evolution, 2012, 4, 683-688.	2.5	99
46	Diversity of functional genes of methanogens, methanotrophs and sulfate reducers in deep-sea hydrothermal environments. Environmental Microbiology, 2005, 7, 118-132.	3.8	95
47	Diversity and Vertical Distribution of Microbial Eukaryotes in the Snow, Sea Ice and Seawater Near the North Pole at the End of the Polar Night. Frontiers in Microbiology, 2011, 2, 106.	3.5	95
48	A new class of marine Euryarchaeota group II from the mediterranean deep chlorophyll maximum. ISME Journal, 2015, 9, 1619-1634.	9.8	95
49	Hydrochemistry and microbialites of the alkaline crater lake Alchichica, Mexico. Facies, 2011, 57, 543-570.	1.4	92
50	Pangenome Evidence for Extensive Interdomain Horizontal Transfer Affecting Lineage Core and Shell Genes in Uncultured Planktonic Thaumarchaeota and Euryarchaeota. Genome Biology and Evolution, 2014, 6, 1549-1563.	2.5	91
51	A novel haloarchaeal-related lineage is widely distributed in deep oceanic regions. Environmental Microbiology, 2001, 3, 72-78.	3.8	90
52	Bacterial gene import and mesophilic adaptation in archaea. Nature Reviews Microbiology, 2015, 13, 447-456.	28.6	90
53	Are hydrothermal vents oases for parasitic protists?. Trends in Parasitology, 2003, 19, 556-558.	3.3	86
54	Polyubiquitin Insertions and the Phylogeny of Cercozoa and Rhizaria. Protist, 2005, 156, 149-161.	1.5	86

#	Article	IF	CITATIONS
55	Tracking microbial biodiversity through molecular and genomic ecology. Research in Microbiology, 2008, 159, 67-73.	2.1	86
56	Comparative analysis of a genome fragment of an uncultivated mesopelagic crenarchaeote reveals multiple horizontal gene transfers. Environmental Microbiology, 2004, 6, 19-34.	3.8	84
57	Diversity of free-living prokaryotes from a deep-sea site at the Antarctic Polar Front. FEMS Microbiology Ecology, 2001, 36, 193-202.	2.7	82
58	Panâ€oceanic distribution of new highly diverse clades of deepâ€sea diplonemids. Environmental Microbiology, 2009, 11, 47-55.	3.8	82
59	Complex communities of small protists and unexpected occurrence of typical marine lineages in shallow freshwater systems. Environmental Microbiology, 2015, 17, 3610-3627.	3.8	80
60	Specific carbonate–microbe interactions in the modern microbialites of Lake Alchichica (Mexico). ISME Journal, 2013, 7, 1997-2009.	9.8	75
61	Highly Diverse and Seasonally Dynamic Protist Community in a Pristine Peat Bog. Protist, 2011, 162, 14-32.	1.5	74
62	Evolution of viruses and cells: do we need a fourth domain of life to explain the origin of eukaryotes?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140327.	4.0	72
63	New insights into marine group III Euryarchaeota, from dark to light. ISME Journal, 2017, 11, 1102-1117.	9.8	72
64	Description of Gloeomargarita lithophora gen. nov., sp. nov., a thylakoid-bearing, basal-branching cyanobacterium with intracellular carbonates, and proposal for Gloeomargaritales ord. nov International Journal of Systematic and Evolutionary Microbiology, 2017, 67, 653-658.	1.7	72
65	Smr: a bacterial and eukaryotic homologue of the C-terminal region of the MutS2 family. Trends in Biochemical Sciences, 1999, 24, 298-300.	7.5	70
66	Phylogenomic Analysis of Kinetoplastids Supports That Trypanosomatids Arose from within Bodonids. Molecular Biology and Evolution, 2011, 28, 53-58.	8.9	68
67	Respiratory Chains in the Last Common Ancestor of Living Organisms. Journal of Molecular Evolution, 1999, 49, 453-460.	1.8	66
68	Eukaryotic diversity and phylogeny using small―and largeâ€subunit ribosomal RNA genes from environmental samples. Environmental Microbiology, 2009, 11, 3179-3188.	3.8	64
69	Reductive evolution and unique predatory mode in the CPR bacterium Vampirococcus lugosii. Nature Communications, 2021, 12, 2454.	12.8	64
70	Evolutionary relationships of Fusobacterium nucleatum based on phylogenetic analysis and comparative genomics. BMC Evolutionary Biology, 2004, 4, 50.	3.2	63
71	Global transcriptome analysis of the aphelid Paraphelidium tribonemae supports the phagotrophic origin of fungi. Communications Biology, 2018, 1, 231.	4.4	63
72	Sunlight-Exposed Biofilm Microbial Communities Are Naturally Resistant to Chernobyl Ionizing-Radiation Levels. PLoS ONE, 2011, 6, e21764.	2.5	63

#	Article	IF	CITATIONS
73	Hyperdiverse archaea near life limits at the polyextreme geothermal Dallol area. Nature Ecology and Evolution, 2019, 3, 1552-1561.	7.8	62
74	Extending the Conserved Phylogenetic Core of Archaea Disentangles the Evolution of the Third Domain of Life. Molecular Biology and Evolution, 2015, 32, 1242-1254.	8.9	59
75	Polyclonality of Concurrent Natural Populations of Alteromonas macleodii. Genome Biology and Evolution, 2012, 4, 1360-1374.	2.5	57
76	Different biogeographic patterns of prokaryotes and microbial eukaryotes in epilithic biofilms. Molecular Ecology, 2012, 21, 3852-3868.	3.9	57
77	Formation of low-T hydrated silicates in modern microbialites from Mexico and implications for microbial fossilization. Frontiers in Earth Science, 2015, 3, .	1.8	57
78	Horizontal and endosymbiotic gene transfer in early plastid evolution. New Phytologist, 2019, 224, 618-624.	7.3	57
79	Rampant horizontal gene transfer and phospho-donor change in the evolution of the phosphofructokinase. Gene, 2003, 318, 185-191.	2.2	55
80	Complete-fosmid and fosmid-end sequences reveal frequent horizontal gene transfers in marine uncultured planktonic archaea. ISME Journal, 2011, 5, 1291-1302.	9.8	55
81	Molecular Phylogeny of Tintinnid Ciliates (Tintinnida, Ciliophora). Protist, 2012, 163, 873-887.	1.5	55
82	New haptophyte lineages and multiple independent colonizations of freshwater ecosystems. Environmental Microbiology Reports, 2013, 5, 322-332.	2.4	55
83	Multiple independent horizontal transfers of informational genes from bacteria to plasmids and phages: implications for the origin of bacterial replication machinery. Molecular Microbiology, 2000, 35, 1-5.	2.5	52
84	Response to Comment on "The 1.2-Megabase Genome Sequence of Mimivirus". Science, 2005, 308, 1114-1114.	12.6	52
85	Analysis of a genome fragment of a deepâ€sea uncultivated Group II euryarchaeote containing 16S rDNA, a spectinomycinâ€like operon and several energy metabolism genes. Environmental Microbiology, 2004, 6, 959-969.	3.8	51
86	Signal Conflicts in the Phylogeny of the Primary Photosynthetic Eukaryotes. Molecular Biology and Evolution, 2009, 26, 2745-2753.	8.9	50
87	Neoceratium gen. nov., a New Genus for All Marine Species Currently Assigned to Ceratium (Dinophyceae). Protist, 2010, 161, 35-54.	1.5	50
88	<i>Solenicola setigera</i> is the first characterized member of the abundant and cosmopolitan uncultured marine stramenopile group MASTâ€3. Environmental Microbiology, 2011, 13, 193-202.	3.8	50
89	Metagenome-based diversity analyses suggest a significant contribution of non-cyanobacterial lineages to carbonate precipitation in modern microbialites. Frontiers in Microbiology, 2015, 6, 797.	3.5	50
90	Phylogenetic Analysis of Eukaryotic Thiolases Suggests Multiple Proteobacterial Origins. Journal of Molecular Evolution, 2005, 61, 65-74.	1.8	48

#	Article	IF	CITATIONS
91	Comparative analysis of genome fragments of <i>Acidobacteria</i> from deep Mediterranean plankton. Environmental Microbiology, 2008, 10, 2704-2717.	3.8	48
92	Biomineralization Patterns of Intracellular Carbonatogenesis in Cyanobacteria: Molecular Hypotheses. Minerals (Basel, Switzerland), 2016, 6, 10.	2.0	48
93	Phylogenomics of a new fungal phylum reveals multiple waves of reductive evolution across Holomycota. Nature Communications, 2021, 12, 4973.	12.8	48
94	Site-and-branch-heterogeneous analyses of an expanded dataset favour mitochondria as sister to known Alphaproteobacteria. Nature Ecology and Evolution, 2022, 6, 253-262.	7.8	48
95	16S rDNA-based analysis reveals cosmopolitan occurrence but limited diversity of two cyanobacterial lineages with contrasted patterns of intracellular carbonate mineralization. Frontiers in Microbiology, 2014, 5, 331.	3.5	47
96	Involvement of microbial mats in early fossilization by decay delay and formation of impressions and replicas of vertebrates and invertebrates. Scientific Reports, 2016, 6, 25716.	3.3	45
97	Phylogenomic Investigation of Phospholipid Synthesis in Archaea. Archaea, 2012, 2012, 1-13.	2.3	44
98	Toward the Monophyly of Haeckel's Radiolaria: 18S rRNA Environmental Data Support the Sisterhood of Polycystinea and Acantharea. Molecular Biology and Evolution, 2002, 19, 118-121.	8.9	43
99	Early evolution of the biotin-dependent carboxylase family. BMC Evolutionary Biology, 2011, 11, 232.	3.2	43
100	Molecular Phylogeny and Ultrastructure of Aphelidium aff. melosirae (Aphelida, Opisthosporidia). Protist, 2014, 165, 512-526.	1.5	43
101	An ACP-Independent Fatty Acid Synthesis Pathway in Archaea: Implications for the Origin of Phospholipids. Molecular Biology and Evolution, 2012, 29, 3261-3265.	8.9	42
102	Functional shifts in microbial mats recapitulate early Earth metabolic transitions. Nature Ecology and Evolution, 2018, 2, 1700-1708.	7.8	40
103	Characterization of two new thermoacidophilic microalgae: Genome organization and comparison withGaldieria sulphuraria. FEMS Microbiology Letters, 1994, 122, 109-114.	1.8	37
104	Molecular Phylogeny of Noctilucoid Dinoflagellates (Noctilucales, Dinophyceae). Protist, 2010, 161, 466-478.	1.5	36
105	Microbial diversity on the Tatahouine meteorite. Meteoritics and Planetary Science, 2006, 41, 1249-1265.	1.6	35
106	Unveiling microbial interactions in stratified mat communities from a warm saline shallow pond. Environmental Microbiology, 2017, 19, 2405-2421.	3.8	35
107	Horizontal gene transfer of a chloroplast DnaJ-Fer protein to Thaumarchaeota and the evolutionary history of the DnaK chaperone system in Archaea. BMC Evolutionary Biology, 2012, 12, 226.	3.2	34
108	Evolutionary Genomics of Metchnikovella incurvata (Metchnikovellidae): An Early Branching Microsporidium. Genome Biology and Evolution, 2018, 10, 2736-2748.	2.5	34

#	Article	IF	CITATIONS
109	The phylogenomic analysis of the anaphase promoting complex and its targets points to complex and modern-like control of the cell cycle in the last common ancestor of eukaryotes. BMC Evolutionary Biology, 2011, 11, 265.	3.2	33
110	Sure facts and open questions about the origin and evolution of photosynthetic plastids. Research in Microbiology, 2001, 152, 771-780.	2.1	32
111	Horizontal gene transfer and archaeal origin of deoxyhypusine synthase homologous genes in bacteria. Gene, 2004, 330, 169-176.	2.2	32
112	Metagenomic analysis of mesopelagic Antarctic plankton reveals a novel deltaproteobacterial group. Microbiology (United Kingdom), 2006, 152, 505-517.	1.8	32
113	Life cycle and molecular phylogeny of the dinoflagellates Chytriodinium and Dissodinium, ectoparasites of copepod eggs. European Journal of Protistology, 2009, 45, 260-270.	1.5	32
114	The rise and fall of Picobiliphytes: How assumed autotrophs turned out to be heterotrophs. BioEssays, 2014, 36, 468-474.	2.5	31
115	High-resolution imaging of sulfur oxidation states, trace elements, and organic molecules distribution in individual microfossils and contempo rary microbial filaments 1 1Associate editor: N. E. Ostrom. Geochimica Et Cosmochimica Acta, 2004, 68, 1561-1569.	3.9	30
116	Comparative metagenomics unveils functions and genome features of microbialiteâ€associated communities along a depth gradient. Environmental Microbiology, 2016, 18, 4990-5004.	3.8	30
117	Molecular Phylogeny of the Ocelloidâ€Bearing Dinoflagellates <i>Erythropsidinium</i> and <i>Warnowia</i> (Warnowiaceae, Dinophyceae). Journal of Eukaryotic Microbiology, 2009, 56, 440-445.	1.7	29
118	Evolution of Eukaryotic Translation Elongation and Termination Factors: Variations of Evolutionary Rate and Genetic Code Deviations. Molecular Biology and Evolution, 2002, 19, 189-200.	8.9	28
119	Integrative analysis of the mineralogical and chemical composition of modern microbialites from ten Mexican lakes: What do we learn about their formation?. Geochimica Et Cosmochimica Acta, 2021, 305, 148-184.	3.9	28
120	Geochemical Conditions Allowing the Formation of Modern Lacustrine Microbialites. Procedia Earth and Planetary Science, 2017, 17, 380-383.	0.6	27
121	Resilience of Freshwater Communities of Small Microbial Eukaryotes Undergoing Severe Drought Events. Frontiers in Microbiology, 2016, 7, 812.	3.5	26
122	Core microbial communities of lacustrine microbialites sampled along an alkalinity gradient. Environmental Microbiology, 2021, 23, 51-68.	3.8	26
123	Microbial diversity in the deep-subsurface hydrothermal aquifer feeding the giant gypsum crystal-bearing Naica Mine, Mexico. Frontiers in Microbiology, 2013, 4, 37.	3.5	25
124	Morphological and Genetic Diversity of Opisthosporidia: New Aphelid <i>Paraphelidium tribonemae</i> gen. et sp. nov Journal of Eukaryotic Microbiology, 2017, 64, 204-212.	1.7	25
125	Protist Interactions and Community Structure During Early Autumn in the Kerguelen Region (Southern Ocean). Protist, 2020, 171, 125709.	1.5	25
126	Horizontal transfers confuse the prokaryotic phylogeny based on the HSP70 protein family. Molecular Microbiology, 1999, 31, 1007-1009.	2.5	24

#	Article	IF	CITATIONS
127	Aurigamonas solis n. gen., n. sp., a Soil-Dwelling Predator with unusual Helioflagellate Organisation and Belonging to a Novel Clade within the Cercozoa. Protist, 2005, 156, 335-354.	1.5	24
128	MOLECULAR PHYLOGENY OF DINOPHYSOID DINOFLAGELLATES: THE SYSTEMATIC POSITION OF OXYPHYSIS OXYTOXOIDES AND THE DINOPHYSIS HASTATA GROUP (DINOPHYSALES, DINOPHYCEAE)1. Journal of Phycology, 2011, 47, 393-406.	2.3	24
129	The Chytrid-like Parasites of Algae Amoeboradix gromovi gen. et sp. nov. and Sanchytrium tribonematis Belong to a New Fungal Lineage. Protist, 2018, 169, 122-140.	1.5	24
130	Combined cultivation and single-cell approaches to the phylogenomics of nucleariid amoebae, close relatives of fungi. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20190094.	4.0	24
131	Modern Subsurface Bacteria in Pristine 2.7 Ga-Old Fossil Stromatolite Drillcore Samples from the Fortescue Group, Western Australia. PLoS ONE, 2009, 4, e5298.	2.5	23
132	The crustacean parasites Ellobiopsis Caullery, 1910 and Thalassomyces Niezabitowski, 1913 form a monophyletic divergent clade within the Alveolata. Systematic Parasitology, 2009, 74, 65-74.	1.1	23
133	What Was the Real Contribution of Endosymbionts to the Eukaryotic Nucleus? Insights from Photosynthetic Eukaryotes. Cold Spring Harbor Perspectives in Biology, 2014, 6, a016014-a016014.	5.5	23
134	7. Ancient Fossil Record and Early Evolution (ca.Â3.8 to 0.5ÂGa). Earth, Moon and Planets, 2006, 98, 247-290.	0.6	22
135	Seasonal dynamics of free-living tintinnid ciliate communities revealed by environmental sequences from the North-West Mediterranean Sea. FEMS Microbiology Ecology, 2014, 87, 330-342.	2.7	22
136	Cultured Asgard Archaea Shed Light on Eukaryogenesis. Cell, 2020, 181, 232-235.	28.9	22
137	Environmental drivers of plankton protist communities along latitudinal and vertical gradients in the oldest and deepest freshwater lake. Environmental Microbiology, 2021, 23, 1436-1451.	3.8	22
138	Genomic organization analysis of acidophilic chemolithotrophic bacteria using pulsed field gel electrophoretic techniques. Biochimie, 1998, 80, 911-921.	2.6	21
139	Molecular Phylogeny of <i>Paraphelidium letcheri</i> sp. nov. (Aphelida, Opisthosporidia). Journal of Eukaryotic Microbiology, 2017, 64, 573-578.	1.7	21
140	<i>Parvularia atlantis</i> gen. et sp. nov., a Nucleariid Filose Amoeba (Holomycota, Opisthokonta). Journal of Eukaryotic Microbiology, 2018, 65, 170-179.	1.7	21
141	A Complex Cell Division Machinery Was Present in the Last Common Ancestor of Eukaryotes. PLoS ONE, 2009, 4, e5021.	2.5	21
142	Palaeontological and molecular arguments for the origin of silica-secreting marine organisms. Comptes Rendus - Palevol, 2004, 3, 229-236.	0.2	18
143	Uncultured Archaea in a hydrothermal microbial assemblage: phylogenetic diversity and characterization of a genome fragment from a euryarchaeote. FEMS Microbiology Ecology, 2006, 57, 452-469.	2.7	18
144	Yet viruses cannot be included in the tree of life. Nature Reviews Microbiology, 2009, 7, 615-617.	28.6	18

#	Article	IF	CITATIONS
145	Phylogenetic and ecological diversity of apusomonads, a lineage of deepâ€branching eukaryotes. Environmental Microbiology Reports, 2017, 9, 113-119.	2.4	18
146	Secondary Plastids of Euglenids and Chlorarachniophytes Function with a Mix of Genes of Red and Green Algal Ancestry. Molecular Biology and Evolution, 2018, 35, 2198-2204.	8.9	17
147	Eukaryogenesis, a syntrophy affair. Nature Microbiology, 2019, 4, 1068-1070.	13.3	17
148	Origin and Evolution of the Halo-Volcanic Complex of Dallol: Proto-Volcanism in Northern Afar (Ethiopia). Frontiers in Earth Science, 2020, 7, .	1.8	17
149	PCR-mediated detection of the chemolithotrophic bacteriumThiobacillus cuprinususing 23S rDNA- and 16S/23S intergenic spacer region-targeted oligonucleotide primers. FEMS Microbiology Letters, 1996, 142, 289-293.	1.8	15
150	Small freshwater ecosystems with dissimilar microbial communities exhibit similar temporal patterns. Molecular Ecology, 2021, 30, 2162-2177.	3.9	15
151	5. Prebiotic Chemistry – Biochemistry – Emergence of Life (4.4–2 Ga). Earth, Moon and Planets, 2006, 98, 153-203.	0.6	14
152	<i>Balechina</i> and the new genus <i>Cucumeridinium</i> gen. nov. (Dinophyceae), unarmored dinoflagellates with thick cell coverings. Journal of Phycology, 2015, 51, 1088-1105.	2.3	14
153	A New Gene Family Diagnostic for Intracellular Biomineralization of Amorphous Ca Carbonates by Cyanobacteria. Genome Biology and Evolution, 2022, 14, .	2.5	14
154	Biochemical analysis of the interaction between elongation factor 1α and α/β-tubulins from a ciliate,Tetrahymena pyriformis. FEBS Letters, 1999, 453, 29-34.	2.8	13
155	The Ultrastructure of Sanchytrium tribonematis (Sanchytriaceae, Fungi incertae sedis) Confirms its Close Relationship to Amoeboradix. Journal of Eukaryotic Microbiology, 2019, 66, 892-898.	1.7	12
156	Time series are critical to understand microbial plankton diversity and ecology. Molecular Ecology, 2019, 28, 920-922.	3.9	12
157	A mitochondrial origin for eukaryotic C2H2 zinc finger regulators?. Trends in Microbiology, 2000, 8, 448-449.	7.7	11
158	Macrofilamentous microbial communities in the metal-rich and acidic River Tinto, Spain. FEMS Microbiology Letters, 2004, 235, 221-228.	1.8	11
159	Molecular phylogeny of the dinoflagellates <i>Podolampas</i> and <i>Blepharocysta</i> (Peridiniales,) Tj ETQq1	1 0.7843 1.4	14 rgBT /Ove
160	Sinophysis and Pseudophalacroma are Distantly Related to Typical Dinophysoid Dinoflagellates (Dinophysales, Dinophyceae). Journal of Eukaryotic Microbiology, 2012, 59, 188-190.	1.7	11
161	Protist Evolution: Stealing Genes to Gut It Out. Current Biology, 2017, 27, R223-R225.	3.9	11
162	Fe-bearing phases in modern lacustrine microbialites from Mexico. Geochimica Et Cosmochimica Acta, 2019, 253, 201-230.	3.9	11

#	Article	IF	CITATIONS
163	A Novel Microbialite-Associated Phototrophic Chloroflexi Lineage Exhibiting a Quasi-Clonal Pattern along Depth. Genome Biology and Evolution, 2020, 12, 1207-1216.	2.5	11
164	Present Status of the Molecular Ecology of Kathablepharids. Protist, 2006, 157, 7-11.	1.5	10
165	Thermophilic Lifestyle for an Uncultured Archaeon from Hydrothermal Vents: Evidence from Environmental Genomics. Applied and Environmental Microbiology, 2006, 72, 2268-2271.	3.1	10
166	Microbial eukaryotes in the suboxic chemosynthetic ecosystem of Movile Cave, Romania. Environmental Microbiology Reports, 2019, 11, 464-473.	2.4	9
167	Physical connections: prokaryotes parasitizing their kin. Environmental Microbiology Reports, 2021, 13, 54-61.	2.4	9
168	Viruses in Biology. Evolution: Education and Outreach, 2012, 5, 389-398.	0.8	8
169	Assignment of genes toLeishmania infantumchromosomes: karyotype and ploidy. FEMS Microbiology Letters, 1995, 129, 27-32.	1.8	7
170	Ancient Adaptive Lateral Gene Transfers in the Symbiotic Opalina–Blastocystis Stramenopile Lineage. Molecular Biology and Evolution, 2020, 37, 651-659.	8.9	7
171	Marine signature taxa and core microbial community stability along latitudinal and vertical gradients in sediments of the deepest freshwater lake. ISME Journal, 2021, 15, 3412-3417.	9.8	7
172	On hydrogen transfer and a chimeric origin of eukaryotes. Trends in Biochemical Sciences, 1999, 24, 424.	7.5	6
173	Evolution: King-Size Plastid Genomes in a New Red Algal Clade. Current Biology, 2017, 27, R651-R653.	3.9	6
174	Archaeal overdominance close to lifeâ€imiting conditions in geothermally influenced hypersaline lakes at the Danakil Depression, Ethiopia. Environmental Microbiology, 2021, 23, 7168-7182.	3.8	6
175	Complete Primary Structure of the 23S rRNA Coding Gene from Thiobacillus cuprinus and its Similarity with that of Burkholderia cepacia. Systematic and Applied Microbiology, 1995, 17, 481-483.	2.8	5
176	Molecular phylogeny of the marine dinoflagellate genus <i>Heterodinium</i> (Dinophyceae). European Journal of Phycology, 2012, 47, 95-104.	2.0	5
177	New Member of Gromochytriales (Chytridiomycetes)—Apiochytrium granulosporumnov. gen. et sp Journal of Eukaryotic Microbiology, 2018, 66, 582-591.	1.7	5
178	Independent Size Expansions and Intron Proliferation in Red Algal Plastid and Mitochondrial Genomes. Genome Biology and Evolution, 2022, 14, .	2.5	5
179	Active Microbial Airborne Dispersal and Biomorphs as Confounding Factors for Life Detection in the Cell-Degrading Brines of the Polyextreme Dallol Geothermal Field. MBio, 2022, 13, e0030722.	4.1	5
180	First Molecular Characterization of the Elusive Marine Protist Meteora sporadica. Protist, 2022, 173, 125896.	1.5	5

#	Article	IF	CITATIONS
181	The nucleolar proteome and the (endosymbiotic) origin of the nucleus. BioEssays, 2004, 26, 1144-1145.	2.5	4
182	The Last Common Ancestor of Modern Cells. , 2007, , 305-317.		3
183	Unarmoured dinoflagellates with a small hyposome: <i>Torodinium</i> and <i>Lebouridinium</i> gen. nov. for <i>Katodinium glaucum</i> (Gymnodiniales, Dinophyceae). European Journal of Phycology, 2016, 51, 226-241.	2.0	3
184	Performance of the melting seawaterâ€ice elution method on the metabarcoding characterization of benthic protist communities. Environmental Microbiology Reports, 2020, 12, 314-323.	2.4	3
185	Correction: Early evolution of the biotin-dependent carboxylase family. BMC Evolutionary Biology, 2012, 12, 117.	3.2	2
186	Rapid formation of mature microbialites in Lake Alchichica, Mexico. Environmental Microbiology Reports, 2021, 13, 600-605.	2.4	2
187	Prebiotic Chemistry — Biochemistry — Emergence of Life (4.4-2 Ga). , 2006, , 153-203.		1
188	MutK may be a 32 kDa protein and be widespread among Proteobacteria. Molecular Microbiology, 1999, 33, 220-222.	2.5	0
189	Ancient Fossil Record and Early Evolution (ca. 3.8 to 0.5 Ga). , 2006, , 247-290.		0
190	Horizontal gene transfer: mechanisms and evolutionary consequences. , 0, , 313-325.		0
191	Protocols for the Study of Microbe–Mineral Interactions in Modern Microbialites. Springer Protocols, 2015, , 319-341.	0.3	0
192	The Transcriptome of <i>Paraphelidium Tribonemae</i> Illuminates the Ancestry of Fungi and Opisthosporidia. SSRN Electronic Journal, 0, , .	0.4	0