
Marco Balsamo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3383872/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Numerical Analysis of VPSA Technology Retrofitted to Steam Reforming Hydrogen Plants to Capture CO2 and Produce Blue H2. Energies, 2022, 15, 1091.	1.6	7
2	Fractal-like random pore model applied to CO2 capture by CaO sorbent. Chemical Engineering Science, 2022, 254, 117649.	1.9	2
3	Experimental and Modeling Studies of Sr ²⁺ and Cs ⁺ Sorption on Cryogels and Comparison to Commercial Adsorbents. Industrial & Engineering Chemistry Research, 2022, 61, 8204-8219.	1.8	8
4	Advanced interpretation of CO2 adsorption thermodynamics onto porous solids by statistical physics formalism. Chemical Engineering Journal, 2021, 406, 126669.	6.6	28
5	Theoretical evaluation of the antioxidant activity of some stilbenes using the Density Functional Theory. Journal of Molecular Structure, 2021, 1229, 129496.	1.8	4
6	Numerical study of sorption-enhanced methane steam reforming over Ni/Al2O3 catalyst in a fixed-bed reactor. International Journal of Heat and Mass Transfer, 2021, 165, 120635.	2.5	17
7	Clorazepate removal from aqueous solution by adsorption onto maghnite: Experimental and theoretical analysis. Journal of Molecular Liquids, 2021, 328, 115430.	2.3	8
8	Surface adsorption of Crizotinib on carbon and boron nitride nanotubes as Anti-Cancer drug Carriers: COSMO-RS and DFT molecular insights. Journal of Molecular Liquids, 2021, 338, 116666.	2.3	37
9	Synthesis and characterization of Layered Double Hydroxides aimed at encapsulation of sodium diclofenac: Theoretical and experimental study. Journal of Molecular Liquids, 2021, 338, 116677.	2.3	6
10	Biogas upgrading by adsorption onto activated carbon and carbon molecular sieves: Experimental and modelling study in binary CO2/CH4 mixture. Journal of Environmental Chemical Engineering, 2021, 9, 106256.	3.3	29
11	Microchannel zeolite 13X adsorbent with high CO2 separation performance. Separation and Purification Technology, 2021, 277, 119483.	3.9	13
12	Role of H2O and O2 during the reactive adsorption of H2S on CuO-ZnO/activated carbon at low temperature. Microporous and Mesoporous Materials, 2020, 295, 109949.	2.2	24
13	Computational and experimental studies on the efficiency of Rosmarinus officinalis polyphenols as green corrosion inhibitors for XC48 steel in acidic medium. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 606, 125458.	2.3	51
14	Liquid–Solid Mass Transfer in Adsorption Systems—An Overlooked Resistance?. Industrial & Engineering Chemistry Research, 2020, 59, 22007-22016.	1.8	44
15	Quantitative structure properties relationship for deep eutectic solvents using Sl f -profile as molecular descriptors. Journal of Molecular Liquids, 2020, 309, 113165.	2.3	40
16	Molecular insights through computational modeling of methylene blue adsorption onto low-cost adsorbents derived from natural materials: A multi-model's approach. Computers and Chemical Engineering, 2020, 140, 106965.	2.0	48
17	A Fractal-Based Correlation for Time-Dependent Surface Diffusivity in Porous Adsorbents. Processes, 2020, 8, 689.	1.3	4
18	Kinetic and thermodynamic study of n-pentane adsorption on activated carbons modified by either carbonization or impregnation with ammonium hydroxide. Microporous and Mesoporous Materials, 2020, 302, 110196.	2.2	13

Marco Balsamo

#	Article	IF	CITATIONS
19	Oligoamine ionic liquids supported on mesoporous microspheres for CO2 separation with good sorption kinetics and low cost. Journal of CO2 Utilization, 2020, 39, 101186.	3.3	6
20	Mechanisms of Methylparaben Adsorption onto Activated Carbons: Removal Tests Supported by a Calorimetric Study of the Adsorbent–Adsorbate Interactions. Molecules, 2019, 24, 413.	1.7	35
21	A quantitative prediction of the viscosity of amine based DESs using Sσ-profile molecular descriptors. Journal of Molecular Structure, 2019, 1184, 357-363.	1.8	47
22	Liquid–solid adsorption processes interpreted by fractal-like kinetic models. Environmental Chemistry Letters, 2019, 17, 1067-1075.	8.3	13
23	Post-combustion CO2 capture: On the potentiality of amino acid ionic liquid as modifying agent of mesoporous solids. Fuel, 2018, 218, 155-161.	3.4	44
24	Utilization of alumina-supported K2CO3 as CO2-selective sorbent: A promising strategy to mitigate the carbon footprint of the maritime sector. Journal of CO2 Utilization, 2018, 24, 139-148.	3.3	14
25	Process analysis of a novel humidification-dehumidification-adsorption (HDHA) desalination method. Desalination, 2018, 429, 155-166.	4.0	43
26	Synergic effect of Zn and Cu oxides dispersed on activated carbon during reactive adsorption of H2S at room temperature. Microporous and Mesoporous Materials, 2018, 257, 135-146.	2.2	78
27	On the performance of continuous stirred tank reactor and plug flow reactor for chemical reactions characterised by non-elementary kinetics. Reaction Kinetics, Mechanisms and Catalysis, 2018, 125, 449-469.	0.8	0
28	Highlighting the effect of the support during H2S adsorption at low temperature over composite Zn-Cu sorbents. Fuel, 2018, 221, 374-379.	3.4	24
29	Modelling CO2 adsorption dynamics onto amine-functionalised sorbents: A fractal-like kinetic perspective. Chemical Engineering Science, 2018, 192, 603-612.	1.9	10
30	Fractal-Like Kinetic Models for Fluid–Solid Adsorption. Environmental Chemistry for A Sustainable World, 2018, , 135-161.	0.3	1
31	CHEMICAL DEMULSIFICATION OF MODEL WATER-IN-OIL EMULSIONS WITH LOW WATER CONTENT BY MEANS OF IONIC LIQUIDS. Brazilian Journal of Chemical Engineering, 2017, 34, 273-282.	0.7	35
32	Synergic Effect of Mixed ZnO and CuO Nanoparticles Supported on Activated Carbon for H ₂ S Adsorption at Room Temperature. Advanced Science Letters, 2017, 23, 5879-5882.	0.2	4
33	ZnO-CuO supported on activated carbon for H2S removal at room temperature. Chemical Engineering Journal, 2016, 304, 399-407.	6.6	109
34	A single particle model of lime sulphation with a fractal formulation of product layer diffusion. Chemical Engineering Science, 2016, 156, 115-120.	1.9	17
35	Synthesis of Activated Carbons by Thermal Treatments of Agricultural Wastes for CO2Capture from Flue Gas. Combustion Science and Technology, 2016, 188, 581-593.	1.2	7
36	Equilibrium and Dynamic CO ₂ Adsorption on Activated Carbon Honeycomb Monoliths. Industrial & Engineering Chemistry Research, 2016, 55, 7898-7905.	1.8	21

Marco Balsamo

#	Article	IF	CITATIONS
37	Dynamic studies on carbon dioxide capture using lignocellulosic based activated carbons. Adsorption, 2015, 21, 633-643.	1.4	10
38	Post-combustion CO2 adsorption on activated carbons with different textural properties. Microporous and Mesoporous Materials, 2015, 209, 157-164.	2.2	54
39	Carbon-supported ionic liquids as innovative adsorbents for CO2 separation from synthetic flue-gas. Journal of Colloid and Interface Science, 2015, 448, 41-50.	5.0	62
40	Fractal-like Vermeulen Kinetic Equation for the Description of Diffusion-Controlled Adsorption Dynamics. Journal of Physical Chemistry C, 2015, 119, 8781-8785.	1.5	34
41	Deeper insights into fractal concepts applied to liquid-phase adsorption dynamics. Fuel Processing Technology, 2014, 128, 412-416.	3.7	19
42	Assessment of CO ₂ Adsorption Capacity on Activated Carbons by a Combination of Batch and Dynamic Tests. Langmuir, 2014, 30, 5840-5848.	1.6	40
43	CO2 adsorption onto synthetic activated carbon: Kinetic, thermodynamic and regeneration studies. Separation and Purification Technology, 2013, 116, 214-221.	3.9	106
44	Gasification of coal combustion ash for its reuse as adsorbent. Fuel, 2013, 106, 147-151.	3.4	16
45	Highlighting the Role of Activated Carbon Particle Size on CO ₂ Capture from Model Flue Gas. Industrial & Engineering Chemistry Research, 2013, 52, 12183-12191.	1.8	30
46	Reuse of Coal Combustion Ash as Sorbent: The Effect of Gasification Treatments. Combustion Science and Technology, 2012, 184, 956-965.	1.2	8
47	Steam- and carbon dioxide-gasification of coal combustion ash for liquid phase cadmium removal by adsorption. Chemical Engineering Journal, 2012, 207-208, 66-71.	6.6	26
48	Cadmium adsorption by coal combustion ashes-based sorbents—Relationship between sorbent properties and adsorption capacity. Journal of Hazardous Materials, 2011, 187, 371-378.	6.5	49
49	Arsenate removal from synthetic wastewater by adsorption onto fly ash. Desalination, 2010, 263, 58-63.	4.0	40
50	Coal combustion ash sorbents for Cd and Zn capture in single-compound and binary systems. , 0, 127,		2

⁵⁰ 41-49.