Giada De Palma

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3383823/publications.pdf

Version: 2024-02-01

56 papers 4,844 citations

28 h-index 214800 47 g-index

56 all docs

56 docs citations

56 times ranked 6726 citing authors

#	Article	IF	CITATIONS
1	The food, the bug, and the ugly: A recipe for foodâ€induced gut pain. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 334-336.	5.7	O
2	Longâ€ŧerm personalized low FODMAP diet in IBS. Neurogastroenterology and Motility, 2022, 34, e14356.	3.0	11
3	Gluten-Free Diet Reduces Symptoms, Particularly Diarrhea, in Patients With Irritable Bowel Syndrome and AntigliadinÂlgG. Clinical Gastroenterology and Hepatology, 2021, 19, 2343-2352.e8.	4.4	30
4	<i>Saccharomyces boulardii</i> CNCM lâ€₹45 modulates the microbiota–gut–brain axis in a humanized mouse model of Irritable Bowel Syndrome. Neurogastroenterology and Motility, 2021, 33, e13985.	3.0	20
5	Fecal microbiome differs between patients with systemic sclerosis with and without small intestinal bacterial overgrowth. Journal of Scleroderma and Related Disorders, 2021, 6, 290-298.	1.7	8
6	Gut Microbiome and Its Role in the Pathophysiology of Irritable Bowel Syndrome. Acta Gastroenterologica Latinoamericana, 2021, 51, .	0.1	0
7	Investigation of the Gut Microbiome in Patients with Schizophrenia and Clozapine-Induced Weight Gain: Protocol and Clinical Characteristics of First Patient Cohorts. Neuropsychobiology, 2020, 79, 5-12.	1.9	11
8	The neuroimmunological toll of nutrient absorption. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 2415-2417.	5.7	1
9	Comparison of the metabolomic profiles of irritable bowel syndrome patients with ulcerative colitis patients and healthy controls: new insights into pathophysiology and potential biomarkers. Alimentary Pharmacology and Therapeutics, 2019, 49, 723-732.	3.7	37
10	Editorial: metabolomic biomarkers for colorectal adenocarcinoma and in the differentiation between irritable bowel syndrome and ulcerative colitis in clinical remission – confounded by the gut microbiome? Authors' reply. Alimentary Pharmacology and Therapeutics, 2019, 49, 1088-1089.	3.7	0
11	Increased prevalence of pathogenic bacteria in the gut microbiota of infants at risk of developing celiac disease: The PROFICEL study. Gut Microbes, 2018, 9, 1-8.	9.8	58
12	High salt diet exacerbates colitis in mice by decreasing Lactobacillus levels and butyrate production. Microbiome, 2018, 6, 57.	11.1	176
13	Su1658 - Gut Microbiota Defines Host Responses to Dietary Fermentable Carbohydrates in IBS: The Role of Bacterial Histamine. Gastroenterology, 2018, 154, S-565.	1.3	1
14	916 - Gut Microbiota-Diet Interactions in a Humanized Mouse Model of IBS: The Role of Intestinal Mast Cells. Gastroenterology, 2018, 154, S-182.	1.3	2
15	Transplantation of fecal microbiota from patients with irritable bowel syndrome alters gut function and behavior in recipient mice. Science Translational Medicine, 2017, 9, .	12.4	366
16	FODMAPs alter symptoms and the metabolome of patients with IBS: a randomised controlled trial. Gut, 2017, 66, 1241-1251.	12.1	330
17	Diet-Microbiota Interactions Underlie Symptoms' Generation in IBS. Gastroenterology, 2017, 152, S160.	1.3	2
18	Probiotic Bifidobacterium longum NCC3001 Reduces Depression Scores and Alters Brain Activity: A Pilot Study in Patients With Irritable Bowel Syndrome. Gastroenterology, 2017, 153, 448-459.e8.	1.3	542

#	Article	IF	Citations
19	Acetylcholine-producing T cells in the intestine regulate antimicrobial peptide expression and microbial diversity. American Journal of Physiology - Renal Physiology, 2016, 311, G920-G933.	3.4	40
20	258 FODMAPs Alter the Metabolome and Symptoms in Irritable Bowel Syndrome Patients. Gastroenterology, 2016, 150, S62-S63.	1.3	0
21	Su1901 High Salt Diet Increases Susceptibility to Experimental Colitis: A Putative Role of Gut Microbiota. Gastroenterology, 2016, 150, S583.	1.3	3
22	SHPâ€⊋ Phosphatase Prevents Colonic Inflammation by Controlling Secretory Cell Differentiation and Maintaining Hostâ€Microbiota Homeostasis. Journal of Cellular Physiology, 2016, 231, 2529-2540.	4.1	21
23	Microbiota and host determinants of behavioural phenotype in maternally separated mice. Nature Communications, 2015, 6, 7735.	12.8	372
24	Deciphering the pathogenesis of NSAID enteropathy using proton pump inhibitors and a hydrogen sulfide-releasing NSAID. American Journal of Physiology - Renal Physiology, 2015, 308, G994-G1003.	3.4	41
25	73 Adrenergic Innervation Regulates Intestinal Microbiota Diversity and Richness via Cholinergic Th17 Lymphocytes. Gastroenterology, 2015, 148, S-20.	1.3	0
26	NSAID enteropathy and bacteria: a complicated relationship. Journal of Gastroenterology, 2015, 50, 387-393.	5.1	68
27	Human milk composition differs in healthy mothers and mothers with celiac disease. European Journal of Nutrition, 2015, 54, 119-128.	3.9	101
28	The HLA-DQ2 genotype selects for early intestinal microbiota composition in infants at high risk of developing coeliac disease. Gut, 2015, 64, 406-417.	12.1	254
29	The microbiota-gut-brain axis in functional gastrointestinal disorders. Gut Microbes, 2014, 5, 419-429.	9.8	112
30	Tu1797 The Adoptive Transfer of Anxiety and Gut Dysfunction From IBS Patients to Axenic Mice Through Microbiota Transplantation. Gastroenterology, 2014, 146, S-845.	1.3	6
31	24 The Critical Role of Gut Microbiota in Determining Behavioral Changes and Susceptibility to Inflammation in a Model of Depression. Gastroenterology, 2014, 146, S-7.	1.3	1
32	Impaired responses to gliadin and gut microbes of immune cells from mice with altered stress-related behavior and premature immune senescence. Journal of Neuroimmunology, 2014, 276, 47-57.	2.3	3
33	The microbiota–gut–brain axis in gastrointestinal disorders: stressed bugs, stressed brain or both?. Journal of Physiology, 2014, 592, 2989-2997.	2.9	242
34	29 The Effect of High Fat Diet on Human Microbiota Transfer Into Gnotobiotic Mice. Gastroenterology, 2014, 146, S-8-S-9.	1.3	0
35	Influence of breastfeeding versus formula feeding on lymphocyte subsets in infants at risk of coeliac disease: the PROFICEL study. European Journal of Nutrition, 2013, 52, 637-646.	3.9	16
36	Influence of early environmental factors on peripheral lymphocyte subsets and gut microbiota in infants at risk for celiac disease. Proceedings of the Nutrition Society, 2013, 72, .	1.0	1

3

#	Article	IF	Citations
37	Influence of early environmental factors on lymphocyte subsets and gut microbiota in infants at risk of celiac disease; the PROFICEL study. Nutricion Hospitalaria, 2013, 28, 464-73.	0.3	24
38	Immune Development and Intestinal Microbiota in Celiac Disease. Clinical and Developmental Immunology, 2012, 2012, 1-12.	3.3	61
39	Modulation of phenotypic and functional maturation of dendritic cells by intestinal bacteria and gliadin: relevance for celiac disease. Journal of Leukocyte Biology, 2012, 92, 1043-1054.	3.3	51
40	308 Immediate Effects of Infliximab Infusion on Mood in Patients With Inflammatory Bowel Disease. Gastroenterology, 2012, 142, S-69.	1.3	0
41	Su1990 The Role of Microbiota in the Maternal Separation Model of Depression. Gastroenterology, 2012, 142, S-554.	1.3	3
42	Influence of Milk-Feeding Type and Genetic Risk of Developing Coeliac Disease on Intestinal Microbiota of Infants: The PROFICEL Study. PLoS ONE, 2012, 7, e30791.	2.5	122
43	Commensal and Probiotic Bacteria Influence Intestinal Barrier Function and Susceptibility to Colitis in Nod1â^'/â^';Nod2â^'/â^' Mice. Inflammatory Bowel Diseases, 2012, 18, 1434-1446.	1.9	114
44	Unraveling the Ties between Celiac Disease and Intestinal Microbiota. International Reviews of Immunology, 2011, 30, 207-218.	3.3	132
45	Proton Pump Inhibitors Exacerbate NSAID-Induced Small Intestinal Injury by Inducing Dysbiosis. Gastroenterology, 2011, 141, 1314-1322.e5.	1.3	387
46	Influence of Environmental and Genetic Factors Linked to Celiac Disease Risk on Infant Gut Colonization by Bacteroides Species. Applied and Environmental Microbiology, 2011, 77, 5316-5323.	3.1	117
47	Role of Intestinal Bacteria in Gliadin-Induced Changes in Intestinal Mucosa: Study in Germ-Free Rats. PLoS ONE, 2011, 6, e16169.	2.5	118
48	Gut colonisation process of newborns and breast-fed babies at risk of developing coeliac disease. Proceedings of the Nutrition Society, 2010, 69, .	1.0	0
49	Peripheral lymphocyte subsets in infants at risk for celiac disease. Effect of milk feeding practices and HLA genotype. The PROFICEL study. Proceedings of the Nutrition Society, 2010, 69, .	1.0	0
50	Intestinal dysbiosis and reduced immunoglobulin-coated bacteria associated with coeliac disease in children. BMC Microbiology, 2010, 10, 63.	3.3	282
51	Impact of Fruit Beverage Consumption on the Antioxidant Status in Healthy Women. Annals of Nutrition and Metabolism, 2009, 54, 35-42.	1.9	18
52	Gut Microbiota and Probiotics in Modulation of Epithelium and Gut-Associated Lymphoid Tissue Function. International Reviews of Immunology, 2009, 28, 397-413.	3.3	62
53	Effects of a gluten-free diet on gut microbiota and immune function in healthy adult human subjects. British Journal of Nutrition, 2009, 102, 1154-1160.	2.3	271
54	Pivotal Advance: Bifidobacteria and Gram-negative bacteria differentially influence immune responses in the proinflammatory milieu of celiac disease. Journal of Leukocyte Biology, 2009, 87, 765-778.	3.3	76

#	Article	lF	CITATION
55	Bifidobacterium strains suppress in vitro the pro-inflammatory milieu triggered by the large intestinal microbiota of coeliac patients. Journal of Inflammation, 2008, 5, 19.	3.4	96
56	Insights into the Roles of Gut Microbes in Obesity. Interdisciplinary Perspectives on Infectious Diseases, 2008, 2008, 1-9.	1.4	34