Sofia Straudi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3382948/publications.pdf

Version: 2024-02-01

394421 477307 1,057 60 19 29 citations h-index g-index papers 61 61 61 1261 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Structured pain-free exercise progressively improves ankle-brachial index and walking ability in patients with claudication and compressible arteries: an observational study. Internal and Emergency Medicine, 2022, 17, 439-449.	2.0	8
2	Is robot-assisted gait training intensity a determinant of functional recovery early after stroke? A pragmatic observational study of clinical care. International Journal of Rehabilitation Research, 2022, 45, 189-194.	1.3	5
3	Cortical Oxygenation during a Motor Task to Evaluate Recovery in Subacute Stroke Patients: A Study with Near-Infrared Spectroscopy. Neurology International, 2022, 14, 322-335.	2.8	2
4	Combining a supervised and home-based task-oriented circuit training improves walking endurance in patients with multiple sclerosis. The MS_TOCT randomized-controlled trial. Multiple Sclerosis and Related Disorders, 2022, 60, 103721.	2.0	5
5	Robot-Assisted Upper Limb Training for Patients with Multiple Sclerosis: An Evidence-Based Review of Clinical Applications and Effectiveness. Applied Sciences (Switzerland), 2022, 12, 222.	2.5	4
6	Combined effects of cerebellar tDCS and task-oriented circuit training in people with multiple sclerosis: A pilot randomized control trial. Restorative Neurology and Neuroscience, 2022, , 1-11.	0.7	4
7	Construct Validity and Responsiveness of the COVID-19 Yorkshire Rehabilitation Scale (C19-YRS) in a Cohort of Italian Hospitalized COVID-19 Patients. International Journal of Environmental Research and Public Health, 2022, 19, 6696.	2.6	11
8	Baseline and overtime variations of soluble adhesion molecule plasma concentrations are associated with mobility recovery after rehabilitation in multiple sclerosis patients. Journal of Neuroimmunology, 2021, 352, 577473.	2.3	3
9	Effectiveness of Home-Based Pain-Free Exercise versus Walking Advice in Patients with Peripheral Artery Disease: A Randomized Controlled Trial. Methods and Protocols, 2021, 4, 29.	2.0	6
10	Systematic review of guidelines to identify recommendations for upper limb robotic rehabilitation after stroke. European Journal of Physical and Rehabilitation Medicine, 2021, 57, 238-245.	2.2	32
11	Motor Cortical Activation Assessment in Progressive Multiple Sclerosis Patients Enrolled in Gait Rehabilitation: A Secondary Analysis of the RAGTIME Trial Assisted by Functional Near-Infrared Spectroscopy. Diagnostics, 2021, 11, 1068.	2.6	3
12	Telerehabiltation in Italy During the COVID-19 Lockdown: A Feasibility and Acceptability Study. International Journal of Telerehabilitation, 2021, 13, e6334.	1.8	20
13	The cognitive level does not interfere with recovery after robot-assisted gait training in traumatic brain injury: A 10-year cohort study. Technology and Disability, 2021, , 1-7.	0.6	O
14	Don't stop walking: the in-home rehabilitation program for peripheral artery disease patients during the COVID-19 pandemic. Internal and Emergency Medicine, 2021, 16, 1307-1315.	2.0	11
15	Video game therapy on mobility and dual tasking in multiple sclerosis: study protocol for a randomised controlled trial. BMJ Open, 2021, 11, e052005.	1.9	O
16	Beneficial Effects of Robot-Assisted Gait Training on Functional Recovery in Women after Stroke: A Cohort Study. Medicina (Lithuania), 2021, 57, 1200.	2.0	6
17	Robot-assisted arm therapy in neurological health conditions: rationale and methodology for the evidence synthesis in the CICERONE Italian Consensus Conference. European Journal of Physical and Rehabilitation Medicine, 2021, 57, 824-830.	2.2	9
18	Robot-Assisted Training for Upper Limb in Stroke (ROBOTAS): An Observational, Multicenter Study to Identify Determinants of Efficacy. Journal of Clinical Medicine, 2021, 10, 5245.	2.4	9

#	Article	lF	Citations
19	Upper Limb Robotic Rehabilitation for Patients with Cervical Spinal Cord Injury: A Comprehensive Review. Brain Sciences, 2021, 11, 1630.	2.3	16
20	Robot-assisted gait training is not superior to intensive overground walking in multiple sclerosis with severe disability (the RAGTIME study): A randomized controlled trial. Multiple Sclerosis Journal, 2020, 26, 716-724.	3.0	43
21	Plasma levels of protein C pathway proteins and brain magnetic resonance imaging volumes in multiple sclerosis. European Journal of Neurology, 2020, 27, 235-243.	3.3	9
22	Effects of a Robot-Assisted Arm Training Plus Hand Functional Electrical Stimulation on Recovery After Stroke: A Randomized Clinical Trial. Archives of Physical Medicine and Rehabilitation, 2020, 101, 309-316.	0.9	29
23	Rehabilitation Improves Mitochondrial Energetics in Progressive Multiple Sclerosis: The Significant Role of Robot-Assisted Gait Training and of the Personalized Intensity. Diagnostics, 2020, 10, 834.	2.6	12
24	Functional recovery in multiple sclerosis patients undergoing rehabilitation programs is associated with plasma levels of hemostasis inhibitors. Multiple Sclerosis and Related Disorders, 2020, 44, 102319.	2.0	7
25	The dose of robot-assisted gait therapy may influence functional recovery in a multidisciplinary rehabilitation program: an exploratory retrospective study. International Journal of Rehabilitation Research, 2020, 43, 175-182.	1.3	9
26	Applying the WHO ICF Framework to the Outcome Measures Used in the Evaluation of Long-Term Clinical Outcomes in Coronavirus Outbreaks. International Journal of Environmental Research and Public Health, 2020, 17, 6476.	2.6	43
27	A Personalized Patient-Centered Intervention to Empower through Physical Activity the Patient in the Dialysis Center: Study Protocol for a Pragmatic Nonrandomized Clinical Trial. Methods and Protocols, 2020, 3, 83.	2.0	5
28	Hyperalgesia and Central Sensitization in Subjects With Chronic Orofacial Pain: Analysis of Pain Thresholds and EEG Biomarkers. Frontiers in Neuroscience, 2020, 14, 552650.	2.8	11
29	Biomarkers of Muscle Metabolism in Peripheral Artery Disease: A Dynamic NIRS-Assisted Study to Detect Adaptations Following Revascularization and Exercise Training. Diagnostics, 2020, 10, 312.	2.6	16
30	Response to Letter to the Editor. Archives of Physical Medicine and Rehabilitation, 2020, 101, 925-926.	0.9	0
31	Effectiveness of blood flowâ€restricted slow walking on mobility in severe multiple sclerosis: A pilot randomized trial. Scandinavian Journal of Medicine and Science in Sports, 2020, 30, 1999-2009.	2.9	28
32	First impact of COVID-19 on services and their preparation. "Instant paper from the field" on rehabilitation answers to the COVID-19 emergency. European Journal of Physical and Rehabilitation Medicine, 2020, 56, 319-322.	2.2	32
33	C6orf10 Low-Frequency and Rare Variants in Italian Multiple Sclerosis Patients. Frontiers in Genetics, 2019, 10, 573.	2.3	13
34	Beyond therapists: Technology-aided physical MS rehabilitation delivery. Multiple Sclerosis Journal, 2019, 25, 1387-1393.	3.0	25
35	Restless Leg Syndrome in Peripheral Artery Disease: Prevalence among Patients with Claudication and Benefits from Low-Intensity Exercise. Journal of Clinical Medicine, 2019, 8, 1403.	2.4	2
36	Cortical activation following chronic transcranial direct current stimulation in patients with minimally conscious state: a NIRS-based assessment associated to behavioral and plastic response. Veins and Lymphatics, 2019, 8, .	0.1	0

#	Article	IF	CITATIONS
37	Soluble neural cell adhesion molecule and behavioural recovery in minimally conscious patients undergoing transcranial direct current stimulation. Clinica Chimica Acta, 2019, 495, 374-376.	1.1	9
38	Bilateral M1 anodal transcranial direct current stimulation in post traumatic chronic minimally conscious state: a pilot EEG-tDCS study. Brain Injury, 2019, 33, 490-495.	1.2	24
39	Gender Differences in Outcomes Following a Pain-Free, Home-Based Exercise Program for Claudication. Journal of Women's Health, 2019, 28, 1313-1321.	3.3	21
40	The effects of transcranial direct current stimulation (tDCS) combined with group exercise treatment in subjects with chronic low back pain: a pilot randomized control trial. Clinical Rehabilitation, 2018, 32, 1348-1356.	2.2	38
41	Coagulation Factor XII Levels and Intrinsic Thrombin Generation in Multiple Sclerosis. Frontiers in Neurology, 2018, 9, 245.	2.4	23
42	Changes in expression profiles of internal jugular vein wall and plasma protein levels in multiple sclerosis. Molecular Medicine, 2018, 24, 42.	4.4	16
43	Home-based exercise for elderly patients with intermittent claudication limited by osteoarticular disorders – feasibility and effectiveness of a low-intensity programme. Vasa - European Journal of Vascular Medicine, 2018, 47, 227-234.	1.4	8
44	Neuroplasticity-Based Technologies and Interventions for Restoring Motor Functions in Multiple Sclerosis. Advances in Experimental Medicine and Biology, 2017, 958, 171-185.	1.6	17
45	The effectiveness of Robot-Assisted Gait Training versus conventional therapy on mobility in severely disabled progressive MultiplE sclerosis patients (RAGTIME): study protocol for a randomized controlled trial. Trials, 2017, 18, 88.	1.6	18
46	The effects of video game therapy on balance and attention in chronic ambulatory traumatic brain injury: an exploratory study. BMC Neurology, 2017, 17, 86.	1.8	32
47	Evaluation of Clinical Gait Analysis parameters in patients affected by Multiple Sclerosis: Analysis of kinematics. Clinical Biomechanics, 2017, 45, 1-8.	1.2	30
48	Use of Nintendo Wii Balance Board for posturographic analysis of Multiple Sclerosis patients with minimal balance impairment. Journal of NeuroEngineering and Rehabilitation, 2017, 14, 19.	4.6	28
49	Using Biophysical Models to Understand the Effect of tDCS on Neurorehabilitation: Searching for Optimal Covariates to Enhance Poststroke Recovery. Frontiers in Neurology, 2017, 8, 58.	2.4	7
50	Effects of low-intensity endurance and resistance training on mobility in chronic stroke survivors: a pilot randomized controlled study. European Journal of Physical and Rehabilitation Medicine, 2017, 53, 228-239.	2.2	49
51	The role of psychological well‑being in multiple sclerosis rehabilitation. European Journal of Physical and Rehabilitation Medicine, 2017, 53, 105-113.	2.2	6
52	tDCS and Robotics on Upper Limb Stroke Rehabilitation: Effect Modification by Stroke Duration and Type of Stroke. BioMed Research International, 2016, 2016, 1-8.	1.9	83
53	The effects of robot-assisted gait training in progressive multiple sclerosis: A randomized controlled trial. Multiple Sclerosis Journal, 2016, 22, 373-384.	3.0	70
54	Monitoring Step Activity During Task-Oriented Circuit Training in High-Functioning Chronic Stroke Survivors: A Proof-of-Concept Feasibility Study. Annals of Rehabilitation Medicine, 2016, 40, 989.	1.6	5

#	Article	IF	CITATIONS
55	A task-oriented circuit training in multiple sclerosis: a feasibility study. BMC Neurology, 2014, 14, 124.	1.8	49
56	Does robot-assisted gait training ameliorate gait abnormalities in multiple sclerosis? A pilot randomized-control trial. NeuroRehabilitation, 2013, 33, 555-563.	1.3	52
57	Clinicoradiographic Assessment of Flexible Flatfoot in Children. Journal of the American Podiatric Medical Association, 2010, 100, 463-471.	0.3	18
58	Robotic Gait Training in an Adult With Cerebral Palsy: A Case Report. PM and R, 2010, 2, 71-75.	1.6	14
59	Gait Performance in an Original Biologic Reconstruction of Proximal Femur in a Skeletally Immature Child: A Case Report. Archives of Physical Medicine and Rehabilitation, 2006, 87, 1534-1541.	0.9	2
60	The Italian version of the Erasmus MC modifications to the Nottingham Sensory Assessment for patients following acquired brain injury: Translation and reliability study. Clinical Rehabilitation, 0, , 026921552211119.	2.2	0